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CSCI 699: Privacy Preserving 
Machine Learning - Week 3
Algorithms for Differentially Privacy and Machine Learning



Recap

• Differential privacy


• 


• connection to tradeoff curves of attacker


• If f is -sensitive wrt  norm, Laplace mechanism


• output th coordinate =   

∀y, ∀ similar D, D′ : Pr[Y = y |𝒟 = D]
Pr[Y = y |𝒟 = D′ ] ≤ eε

Δ1 ℓ1

i fi(D) + Lap(Δ1/ε)



• Approximate differential privacy


• δ ≤ 1/n or 10−5

For  and ,


 satisfies -DP iff for any neighboring datasets 


t ∼ A(D) ℒD,D′ 
= ln ( Pr[A(D) = t]

Pr[A(D′ ) = t] )
A (ε, δ) D, D′ ∈ χn

Pr [ℒD,D′ 
≥ ε] ≤ δ

Recap



• Gaussian mechanism 


• If f is -sensitive wrt  norm, Gaussian mechanism


• output  


• How large should  be for -DP ?

Δ2 ℓ2

f(D) + 𝒩(0 , σ2Id)
σ2 (ε, δ)

Recap



Analytic vs. programatic Gaussian Mechanism
• Original paper [Dwork et al. 2006]:


•  suffices.


• But suboptimal. What is the optimal value?


• [Balle and Wang ICML ’18]:


•   = 


• Use 


• Code: https://github.com/BorjaBalle/analytic-gaussian-mechanism

σ ≥
Δ2 2 ln(1.25/δ)

ε

u* arg min
u

Φ(− εu) − Φ(− ε(u + 2))

σ = ( 2 + u* + u*) ⋅ Δ2
ε

https://github.com/BorjaBalle/analytic-gaussian-mechanism


Outline for today
How to make ML private?

• Making mean estimation private


• ML training


• Private ML training



Privacy vs. 
utility: mean



Binary Mean Estimation
Utility of exact mean

• We have n i.i.d samples  where .


• Estimate mean as . What is the expected error?  

 
 

(x1, …, xn) xi ∈ {0,1}

𝒳μ = 1
n

n

∑
i=1

xi



Binary Mean Estimation
Utility of the private mean

• We have n i.i.d samples  where .


• Estimate mean as . What is ? 

• Net error is 


• Error with Gaussian mechanism is similar.  
 
 

(x1, …, xn) xi ∈ {0,1}

𝒳μ = 1
n

n

∑
i=1

xi + Lap(Δ/ε) Δ

1
n

+ 2
n2ε2 .



Unbounded Mean Estimation
Utility of exact mean

• We have n i.i.d samples  with .


• Estimate mean as . What is the expected error?


• What is the sensitivity? 
 
 

(x1, …, xn) E→xi→2
2 ≤ σ2

𝒳μ = 1
n

n

∑
i=1

xi



Unbounded Mean Estimation
Bounding sensitivity

• We have n i.i.d samples  with .


• Let us clip  with a threshold of . The expected error is 

(x1, …, xn) E→xi→2
2 ≤ σ2

xi τ ≤ σ4

τ2 + σ2

n
.



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  with .


• Output .

(x1, …, xn) E[x2
i ] ≤ σ2

𝒳μ = 1
n

n

∑
i=1

clipτ(xi) + Lap(2τ/nε)

Theorem

 with  satisfies -DP and 
has an error


𝒳μ τ = σ nε /2 ε

E[( 𝒳μ − μ)2] ≤ σ2

n
+ 4σ2

nε



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  for  with .


• Output  for .


• Error?

(x1, …, xn) xi ∈ ℝd E→xi→2
2 ≤ σ2

1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  for  with .


• Output  for .


• Error?

(x1, …, xn) xi ∈ ℝd E→xi→2
2 ≤ σ2

𝒳μ = 1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem
 with  satisfies -DP 

and has an error

𝒳μ τ = O(σ nε /d1/4) (ε, δ)

E[( 𝒳μ − μ)2] ≤ O ( σ2

n
+ σ2 d log(1/δ)

nε )



Training ML 
models: GD



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 


• We want to find parameters which minimizes test-loss 



•

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)

L(θ) = E(x,y)[ℓ( f(x; θ), y)]



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 


• We want to find parameters which minimizes test-loss 



• We instead minimize training loss 

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)

L(θ) = E(x,y)[ℓ( f(x; θ), y)]
𝒳L(θ) = 1

n ⊤n
i=1 [ℓ( f(xi; θ), yi)]



Understanding Gradient Descent

• We want to minimize our 
function 


• Iterative algorithm. Starting 
from  in step t,

L(θ)

θt



Understanding Gradient Descent

• We want to minimize our 
function 


• Iterative algorithm. Starting 
from  in step t,


• we create a local approximation 
 




• Move along “steepest” descent 
direction.

L(θ)

θt

L(θt + Δθ) ∑ L(θt) + ≈L(θt)𝒴Δθ



Understanding Gradient Descent
Algorithm

• Initialize 


• For t=1, …, T


• 


• How to decide ?

θ0

θt = θt−1 − γt ≈L(θt−1)
γt



Making Gradient 
Descent Private: 
Composition



Private full-batch gradient descent
Algorithm

• Starting from , at each time step we update


• 


• To make it private


• 


• Assume scalar for now. So noise = 

θ0

θt = θt−1 − γ 1
n ⊤n

i=1 ≈θℓ( f(xi; θ), yi)

θt = θt−1 − γ 1
n ⊤n

i=1 Clipτ (≈θℓ( f(xi; θ), yi)) + noise

Lap(??)



Private full-batch gradient descent
One-step privacy

• Suppose we just run step of



• Sensitivity? How much noise?


• How to reason about what happens across time steps?

θt = θt−1 − γ 1
n ⊤n

i=1 Clipτ (≈θℓ( f(xi; θ), yi)) + Lap(??)



Post-processing and composition
Post-processing

• You can never undo the output of a DP-algorithm

Theorem

 is a -DP 
algorithm and  is a mapping 
independent of , then  
is -DP

A : ∘n ̂ ℝd (ε, δ)
f
∘ f ∇ A

(ε, δ)

• Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).



Post-processing and composition
Composition

• What if the new function also depends on our data?

Theorem

 is a -DP algorithm and 
 is a -DP algorithm, then

 is -DP

A : ∘n ̂ ℝd (ε1,0)
B : ∘n ̂ ℝd (ε2,0)
(A, B) : ∘n ̂ ℝd × ℝd (ε1 + ε2,0)



Private full-batch gradient descent
Multi-step privacy

• One step is -DP  



• -steps of full-batch gradient descent is -DP.


• We can do better!

(ε,0)
θt = θt−1 − γ 1

n ⊤n
i=1 Clipτ (≈θℓ( f(xi; θ), yi)) + Lap(2τ/nε)

k (kε,0)



Private full-batch gradient descent
Advanced composition

• Let us compute the privacy random variable: 




•  and has mean 0.

R = log ( Pr[A(D) = t]
Pr[A(D′ ) = t] )  for t ∼ A(D)

R ∈ [−ε, ε]



Private full-batch gradient descent
Advanced composition

• Privacy random variable of composition:




• , 0-mean, conditionally independent.

R =
k

∑
i=1

log ( Pr[Ai(D) = ti]
Pr[Ai(D′ ) = ti] ) =

k

∑
i=1

Ri

Ri ∈ [−ε, ε]



Private full-batch gradient descent
Aside: Azuma’s inequality

Azuma’s inequality

Given  where , . 
Then,

X1, …, Xn E[Xi |past] = 0 |Xi | ≤ εi

• , 0-mean, conditionally independent.


•  i.e. we have -DP!

Ri ∈ [−ε, ε]

Pr[⊤k
i=1 Ri ≥ ε 2k log(1/δ)] ≤ δ (ε 2k ln(1/δ), δ)

Pr[⊤k
i=1 Xi ≥ Δ] ≤ exp(−Δ2/2⊤k

i=1 ε2
i )



Private full-batch gradient descent
Advanced composition

Theorem. Advanced Composition
A combination of , each of which is 

-DP is -DP where


For any choice of .

A1 ∇ A2 ∇ Ak
(ε, δ) (ε̃, δ̃)

δ′ 

ε̃ = ε 2k ln(1/δ′ ) + k eε − 1
eε + 1 and δ̃ = kδ + δ′ 



Private full-batch gradient descent
Multi-step privacy

• One step is -DP  



• -steps of full-batch gradient descent is -DP.


• How about with Gaussian-noise and vectors?

(ε,0)
θt = θt−1 − γ 1

n ⊤n
i=1 Clipτ (≈θℓ( f(xi; θ), yi)) + Lap(2τ/nε)

k (ε 2k ln(1/δ), δ)



Optimization for 
Deep Learning



Stochastic Gradient Descent
Convergence analysis

• How do we compute 


• We are only given data samples:  i.e. we cannot compute  

≈L(θt)?
(x1, y1), …

L(θ) = E(x,y)[ℓ( f(x; θ), y)]



Stochastic Gradient Descent
Convergence analysis

• How do we compute 


• We are only given data samples:  i.e. we cannot compute  



• SGD says no problem. Just use sample gradient. Initialize 


• For t=1, …, T


• Sample a data point 


•

≈L(θt)?
(x1, y1), …

L(θ) = E(x,y)[ℓ( f(x; θ), y)]

θ0

(xt, yt)
θt = θt−1 − γt ≈θℓ( f(xt; θt−1), yt) = θt−1 − γt ≈ℓt(θt−1)



Gradient Descent Variants

• we are given  samples 


• We have a few options:


• Exact gradient: 


• Stochastic gradient: for a random sample , 


• Full-batch gradient: 


• Mini-batch gradient: for a sample , 

n (x1, y1), …, (xn, yn)

≈θEx,y[ℓ( f(x; θ), y)]

(xi, yi) ≈θℓ( f(xi; θ), yi)
1
n ⊤n

i=1 ≈θℓ( f(xi; θ), yi)

ℬ 1
|ℬ | ⊤i∈ℬ ≈θℓ( f(xi; θ), yi)



Understanding Gradient Descent
Convergence analysis



Optimization in Deep Learning
Initialization

• Initialization matters! 


• Always start with a pretrained 
model if you can.



Optimization in Deep Learning
Momentum

Gradient descent slows down a lot when it encounters large flat sections



Optimization in Deep Learning
Momentum

Physical intuition - biking down a hill is faster than walking down

• Add momentum to speed it up


• 


•

mt = mt−1 + β≈L(θt−1)
θt = θt−1 − γmt



Optimization in Deep Learning
Adaptivity

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”

• We need to keep changing step size since 
smoothness keeps changing all the time


• Make the step-size adaptive - AdaGrad


•   - running estimate of 
second moment


•  - normalize the 
updates.

vt = vt−1 + β2(≈L(θt−1))2

θt = θt−1 − γ≈L(θt−1)/ vt + ϵ



Optimization in Deep Learning
AdaGrad

• Progress of AdaGrad in green is much more consistent across steps.


• But it is slower than momentum methods (blue / red)



Optimization in Deep Learning
Adam

• Combine everything - adaptivity + momentum  = Adam


•  - first moment estimate


•   - second moment estimate


•

mt = mt−1 + β≈L(θt−1 − γmt−1)
vt = vt−1 + β2(≈L(θt−1))2

θt = θt−1 − γmt / vt + ϵ



Optimization in Deep Learning
Adam

• AdamW (a minor variant) is likely the best default optimizer


• In LLMs, additionally learning rate warm up is used for 5 epochs.



What about privacy?
Can we make SGD private?

• For t=1, …, T


• Sample a data point 


•

(xt, yt)
θt = θt−1 − γt ≈θℓ( f(xt; θt−1), yt) = θt−1 − γt ≈ℓt(θt−1)



Private stochastic gradient descent
Algorithm

• Starting from , at each time step


• sample  randomly from 


• 


• To make it private


• 


• Assume scalar for now. So noise = 

θ0

(xi, yi) (x1, y1), …, (xn, yn)
θt = θt−1 − γ≈θℓ( f(xi; θ), yi)

θt = θt−1 − γClipτ (≈θℓ( f(xi; θ), yi)) + noise

Lap(??)



Private stochastic gradient descent
One-step privacy

• Suppose we just run step:


• 


• No improvement due to 


• Important note: use poisson sampling! Not uniform. 


• This makes analyzing what happens to each data-point independent.

θt = θt−1 − γClipτ (≈θℓ( f(xt; θ), yt)) + Lap(2τ/ε)

n



• Given a dataset , and 


• We define S to be a random m-subsample of D


• Is releasing S private?


• Now suppose  is -DP on D. What is the privacy of A composed with 
subsampling?

D ∈ ∘n m ∈ [n]

A ε

Privacy amplification via subsampling



Privacy amplification via subsampling

Theorem. Subsampling Amplification
Composing an -DP A with a sampling rate of  
results in an -DP algorithm where


(ε, δ) q
(ε̃, δ̃)

ε̃ = log(1 − q + qeε) = O(qε) and δ̃ = qδ



Recall
Membership Inference definition of privacy

…
Algorithm

Data providers Data users

Algorithm

Data providers

querie

answer

World 1: 

World 2: 
…

…

…

• Claim: 


• and, , where 

β + (1 − q + qeε)α ≥ 1 − δ

(1 − q + qeε)β + α ≥ 1 − δ α = type I error, β = type II error



Private stochastic gradient descent
One-step privacy

• Suppose we just run step:


• 


• We have . So, we have 


• Adding in advanced composition, k rounds of SGD satisfies 
-DP

θt = θt−1 − γClipτ (≈θℓ( f(xt; θ), yt)) + Lap(2τ/ε)

q = 1/n ε̃ = log(1 − 1/n + eε/n) = O(ε/n)

(O(ε/n k ln(1/δ)), δ)



Private stochastic gradient descent
One-step privacy

• Suppose we just run step:


• 


• We have . So, we have 


• Adding in advanced composition, k rounds of SGD satisfies 
-DP


• Hyper-parameter - tune sampling rate q in practice

θt = θt−1 − γClipτ (≈θℓ( f(xt; θ), yt)) + Lap(2τ/ε)

q = 1/n ε̃ = log(1 − 1/n + eε/n) = O(ε/n)

(O(ε/n k ln(1/δ)), δ)


