
Sai Praneeth Karimireddy, Sep 13 2024

CSCI 699: Privacy Preserving
Machine Learning - Week 3
Algorithms for Differentially Privacy and Machine Learning

Recap

• Differential privacy

•

• connection to tradeoff curves of attacker

• If f is -sensitive wrt norm, Laplace mechanism

• output th coordinate =

∀y, ∀ similar D, D′ : Pr[Y = y |𝒟 = D]
Pr[Y = y |𝒟 = D′] ≤ eε

Δ1 ℓ1

i fi(D) + Lap(Δ1/ε)

• Approximate differential privacy

• δ ≤ 1/n or 10−5

For and ,

 satisfies -DP iff for any neighboring datasets

t ∼ A(D) ℒD,D′
= ln (Pr[A(D) = t]

Pr[A(D′) = t])
A (ε, δ) D, D′ ∈ χn

Pr [ℒD,D′
≥ ε] ≤ δ

Recap

• Gaussian mechanism

• If f is -sensitive wrt norm, Gaussian mechanism

• output

• How large should be for -DP ?

Δ2 ℓ2

f(D) + 𝒩(0 , σ2Id)
σ2 (ε, δ)

Recap

Analytic vs. programatic Gaussian Mechanism
• Original paper [Dwork et al. 2006]:

• suffices.

• But suboptimal. What is the optimal value?

• [Balle and Wang ICML ’18]:

• =

• Use

• Code: https://github.com/BorjaBalle/analytic-gaussian-mechanism

σ ≥
Δ2 2 ln(1.25/δ)

ε

u* arg min
u

Φ(− εu) − Φ(− ε(u + 2))

σ = (2 + u* + u*) ⋅ Δ2
ε

https://github.com/BorjaBalle/analytic-gaussian-mechanism

Outline for today
How to make ML private?

• Making mean estimation private

• ML training

• Private ML training

Privacy vs.
utility: mean

Binary Mean Estimation
Utility of exact mean

• We have n i.i.d samples where .

• Estimate mean as . What is the expected error?  

 
 

(x1, …, xn) xi ∈ {0,1}

𝒳μ = 1
n

n

∑
i=1

xi

Binary Mean Estimation
Utility of the private mean

• We have n i.i.d samples where .

• Estimate mean as . What is ? 

• Net error is

• Error with Gaussian mechanism is similar.  
 
 

(x1, …, xn) xi ∈ {0,1}

𝒳μ = 1
n

n

∑
i=1

xi + Lap(Δ/ε) Δ

1
n

+ 2
n2ε2 .

Unbounded Mean Estimation
Utility of exact mean

• We have n i.i.d samples with .

• Estimate mean as . What is the expected error?

• What is the sensitivity? 
 
 

(x1, …, xn) E→xi→2
2 ≤ σ2

𝒳μ = 1
n

n

∑
i=1

xi

Unbounded Mean Estimation
Bounding sensitivity

• We have n i.i.d samples with .

• Let us clip with a threshold of . The expected error is

(x1, …, xn) E→xi→2
2 ≤ σ2

xi τ ≤ σ4

τ2 + σ2

n
.

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples with .

• Output .

(x1, …, xn) E[x2
i] ≤ σ2

𝒳μ = 1
n

n

∑
i=1

clipτ(xi) + Lap(2τ/nε)

Theorem

 with satisfies -DP and
has an error

𝒳μ τ = σ nε /2 ε

E[(𝒳μ − μ)2] ≤ σ2

n
+ 4σ2

nε

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples for with .

• Output for .

• Error?

(x1, …, xn) xi ∈ ℝd E→xi→2
2 ≤ σ2

1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples for with .

• Output for .

• Error?

(x1, …, xn) xi ∈ ℝd E→xi→2
2 ≤ σ2

𝒳μ = 1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem
 with satisfies -DP

and has an error

𝒳μ τ = O(σ nε /d1/4) (ε, δ)

E[(𝒳μ − μ)2] ≤ O (σ2

n
+ σ2 d log(1/δ)

nε)

Training ML
models: GD

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

• We want to find parameters which minimizes test-loss

•

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)

L(θ) = E(x,y)[ℓ(f(x; θ), y)]

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

• We want to find parameters which minimizes test-loss

• We instead minimize training loss

(x1, y1), …, (xn, yn)
f(x; θ) : ∘ ̂ ∥

f(x; θ) = θ𝒴x

f(x; θ) = θ𝒴
2 ⋅ Relu(θ𝒴

1 x)

L(θ) = E(x,y)[ℓ(f(x; θ), y)]
𝒳L(θ) = 1

n ⊤n
i=1 [ℓ(f(xi; θ), yi)]

Understanding Gradient Descent

• We want to minimize our
function

• Iterative algorithm. Starting
from in step t,

L(θ)

θt

Understanding Gradient Descent

• We want to minimize our
function

• Iterative algorithm. Starting
from in step t,

• we create a local approximation 
 

• Move along “steepest” descent
direction.

L(θ)

θt

L(θt + Δθ) ∑ L(θt) + ≈L(θt)𝒴Δθ

Understanding Gradient Descent
Algorithm

• Initialize

• For t=1, …, T

•

• How to decide ?

θ0

θt = θt−1 − γt ≈L(θt−1)
γt

Making Gradient
Descent Private: 
Composition

Private full-batch gradient descent
Algorithm

• Starting from , at each time step we update

•

• To make it private

•

• Assume scalar for now. So noise =

θ0

θt = θt−1 − γ 1
n ⊤n

i=1 ≈θℓ(f(xi; θ), yi)

θt = θt−1 − γ 1
n ⊤n

i=1 Clipτ (≈θℓ(f(xi; θ), yi)) + noise

Lap(??)

Private full-batch gradient descent
One-step privacy

• Suppose we just run step of

• Sensitivity? How much noise?

• How to reason about what happens across time steps?

θt = θt−1 − γ 1
n ⊤n

i=1 Clipτ (≈θℓ(f(xi; θ), yi)) + Lap(??)

Post-processing and composition
Post-processing

• You can never undo the output of a DP-algorithm

Theorem

 is a -DP
algorithm and is a mapping
independent of , then
is -DP

A : ∘n ̂ ℝd (ε, δ)
f
∘ f ∇ A

(ε, δ)

• Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).

Post-processing and composition
Composition

• What if the new function also depends on our data?

Theorem

 is a -DP algorithm and
 is a -DP algorithm, then

 is -DP

A : ∘n ̂ ℝd (ε1,0)
B : ∘n ̂ ℝd (ε2,0)
(A, B) : ∘n ̂ ℝd × ℝd (ε1 + ε2,0)

Private full-batch gradient descent
Multi-step privacy

• One step is -DP  

• -steps of full-batch gradient descent is -DP.

• We can do better!

(ε,0)
θt = θt−1 − γ 1

n ⊤n
i=1 Clipτ (≈θℓ(f(xi; θ), yi)) + Lap(2τ/nε)

k (kε,0)

Private full-batch gradient descent
Advanced composition

• Let us compute the privacy random variable:

• and has mean 0.

R = log (Pr[A(D) = t]
Pr[A(D′) = t]) for t ∼ A(D)

R ∈ [−ε, ε]

Private full-batch gradient descent
Advanced composition

• Privacy random variable of composition:

• , 0-mean, conditionally independent.

R =
k

∑
i=1

log (Pr[Ai(D) = ti]
Pr[Ai(D′) = ti]) =

k

∑
i=1

Ri

Ri ∈ [−ε, ε]

Private full-batch gradient descent
Aside: Azuma’s inequality

Azuma’s inequality

Given where , .
Then,

X1, …, Xn E[Xi |past] = 0 |Xi | ≤ εi

• , 0-mean, conditionally independent.

• i.e. we have -DP!

Ri ∈ [−ε, ε]

Pr[⊤k
i=1 Ri ≥ ε 2k log(1/δ)] ≤ δ (ε 2k ln(1/δ), δ)

Pr[⊤k
i=1 Xi ≥ Δ] ≤ exp(−Δ2/2⊤k

i=1 ε2
i)

Private full-batch gradient descent
Advanced composition

Theorem. Advanced Composition
A combination of , each of which is

-DP is -DP where

For any choice of .

A1 ∇ A2 ∇ Ak
(ε, δ) (ε̃, δ̃)

δ′

ε̃ = ε 2k ln(1/δ′) + k eε − 1
eε + 1 and δ̃ = kδ + δ′

Private full-batch gradient descent
Multi-step privacy

• One step is -DP  

• -steps of full-batch gradient descent is -DP.

• How about with Gaussian-noise and vectors?

(ε,0)
θt = θt−1 − γ 1

n ⊤n
i=1 Clipτ (≈θℓ(f(xi; θ), yi)) + Lap(2τ/nε)

k (ε 2k ln(1/δ), δ)

Optimization for
Deep Learning

Stochastic Gradient Descent
Convergence analysis

• How do we compute

• We are only given data samples: i.e. we cannot compute

≈L(θt)?
(x1, y1), …

L(θ) = E(x,y)[ℓ(f(x; θ), y)]

Stochastic Gradient Descent
Convergence analysis

• How do we compute

• We are only given data samples: i.e. we cannot compute

• SGD says no problem. Just use sample gradient. Initialize

• For t=1, …, T

• Sample a data point

•

≈L(θt)?
(x1, y1), …

L(θ) = E(x,y)[ℓ(f(x; θ), y)]

θ0

(xt, yt)
θt = θt−1 − γt ≈θℓ(f(xt; θt−1), yt) = θt−1 − γt ≈ℓt(θt−1)

Gradient Descent Variants

• we are given samples

• We have a few options:

• Exact gradient:

• Stochastic gradient: for a random sample ,

• Full-batch gradient:

• Mini-batch gradient: for a sample ,

n (x1, y1), …, (xn, yn)

≈θEx,y[ℓ(f(x; θ), y)]

(xi, yi) ≈θℓ(f(xi; θ), yi)
1
n ⊤n

i=1 ≈θℓ(f(xi; θ), yi)

ℬ 1
|ℬ | ⊤i∈ℬ ≈θℓ(f(xi; θ), yi)

Understanding Gradient Descent
Convergence analysis

Optimization in Deep Learning
Initialization

• Initialization matters!

• Always start with a pretrained
model if you can.

Optimization in Deep Learning
Momentum

Gradient descent slows down a lot when it encounters large flat sections

Optimization in Deep Learning
Momentum

Physical intuition - biking down a hill is faster than walking down

• Add momentum to speed it up

•

•

mt = mt−1 + β≈L(θt−1)
θt = θt−1 − γmt

Optimization in Deep Learning
Adaptivity

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”

• We need to keep changing step size since
smoothness keeps changing all the time

• Make the step-size adaptive - AdaGrad

• - running estimate of
second moment

• - normalize the
updates.

vt = vt−1 + β2(≈L(θt−1))2

θt = θt−1 − γ≈L(θt−1)/ vt + ϵ

Optimization in Deep Learning
AdaGrad

• Progress of AdaGrad in green is much more consistent across steps.

• But it is slower than momentum methods (blue / red)

Optimization in Deep Learning
Adam

• Combine everything - adaptivity + momentum = Adam

• - first moment estimate

• - second moment estimate

•

mt = mt−1 + β≈L(θt−1 − γmt−1)
vt = vt−1 + β2(≈L(θt−1))2

θt = θt−1 − γmt / vt + ϵ

Optimization in Deep Learning
Adam

• AdamW (a minor variant) is likely the best default optimizer

• In LLMs, additionally learning rate warm up is used for 5 epochs.

What about privacy?
Can we make SGD private?

• For t=1, …, T

• Sample a data point

•

(xt, yt)
θt = θt−1 − γt ≈θℓ(f(xt; θt−1), yt) = θt−1 − γt ≈ℓt(θt−1)

Private stochastic gradient descent
Algorithm

• Starting from , at each time step

• sample randomly from

•

• To make it private

•

• Assume scalar for now. So noise =

θ0

(xi, yi) (x1, y1), …, (xn, yn)
θt = θt−1 − γ≈θℓ(f(xi; θ), yi)

θt = θt−1 − γClipτ (≈θℓ(f(xi; θ), yi)) + noise

Lap(??)

Private stochastic gradient descent
One-step privacy

• Suppose we just run step:

•

• No improvement due to

• Important note: use poisson sampling! Not uniform.

• This makes analyzing what happens to each data-point independent.

θt = θt−1 − γClipτ (≈θℓ(f(xt; θ), yt)) + Lap(2τ/ε)

n

• Given a dataset , and

• We define S to be a random m-subsample of D

• Is releasing S private?

• Now suppose is -DP on D. What is the privacy of A composed with
subsampling?

D ∈ ∘n m ∈ [n]

A ε

Privacy amplification via subsampling

Privacy amplification via subsampling

Theorem. Subsampling Amplification
Composing an -DP A with a sampling rate of
results in an -DP algorithm where

(ε, δ) q
(ε̃, δ̃)

ε̃ = log(1 − q + qeε) = O(qε) and δ̃ = qδ

Recall
Membership Inference definition of privacy

…
Algorithm

Data providers Data users

Algorithm

Data providers

querie

answer

World 1:

World 2:
…

…

…

• Claim:

• and, , where

β + (1 − q + qeε)α ≥ 1 − δ

(1 − q + qeε)β + α ≥ 1 − δ α = type I error, β = type II error

Private stochastic gradient descent
One-step privacy

• Suppose we just run step:

•

• We have . So, we have

• Adding in advanced composition, k rounds of SGD satisfies
-DP

θt = θt−1 − γClipτ (≈θℓ(f(xt; θ), yt)) + Lap(2τ/ε)

q = 1/n ε̃ = log(1 − 1/n + eε/n) = O(ε/n)

(O(ε/n k ln(1/δ)), δ)

Private stochastic gradient descent
One-step privacy

• Suppose we just run step:

•

• We have . So, we have

• Adding in advanced composition, k rounds of SGD satisfies
-DP

• Hyper-parameter - tune sampling rate q in practice

θt = θt−1 − γClipτ (≈θℓ(f(xt; θ), yt)) + Lap(2τ/ε)

q = 1/n ε̃ = log(1 − 1/n + eε/n) = O(ε/n)

(O(ε/n k ln(1/δ)), δ)

