CSCI 699: Privacy Preserving
Machine Learning - Week 4

Gaussian DP and Privacy Auditing

Sai Praneeth Karimireddy, Sep 22 2025



Recap

« Approximate differential privacy
[Dwork and Roth 2014]

Let us draw a variable t ~ A(D). Then the

o <Pr[A(D):t])
DD =\ prAD) = 1

A satisfies (&, 0)-DP iff for any similar/neighboring datasets
D,D’ € y" we have Pr [ED,D, > 8] <0



Graph for 0.1x, 0.11/2x In(1000) + x(e%! — 1)/ + 1)

Recap 0@ byl 74
L
ML
» Composition: gimple - ke-DP ;;f/w
k

Theorem. Advanced Composition

A combination of A o A, o A, each of which is
(e,0)-DP is (€, 6)-DP where

& = ey/2kIn(175) + k

et —1
et + 1

and 6=k6+ ¢

For any choice of 0.



Recap

e Subsampling amplification

Theorem. Subsampling Amplification

Composing an (&, 0)-DP A with a sampling rate of g
results in an (&, 0)-DP algorithm where

g=1log(l —qg+qge®)=0(ge) and 6=qs

oy



Recap

Private SGD with clipping L1 norm:
iV Wi ippi Q_/

. 0,=0,_, %}/C“pf (Vo (fx33.0), )

) {3

With% k rounds satisfies (O(e/n\/kIn(1/6)), 6)-DP for any 6 > 0.

Can also clip L2 norm and use Qaussian mechanis
<”

Q: what did you observe empirically L1 vs. L27




— O (fC(‘,L)('('/l’1
Recap ? f’

Poisson subsampling disadvantages
° et — et—l —7 < [ﬁ Zie%’ C“pf ( ng(f(xt, 9)’ yl))] + /V(O’szz)>

e lcannotsetp x | % |_1 - mechanism cannot be
data-dependent.

It should work for the worst case i.e. when | % | = 1.



Agenda for today

Analyzing privacy of ML training

Improving composition

Gaussian DP

Privacy Auditing

HW1 solutions



PRIVACY

Better composition

ACCURACY




Approximate DP analysis is loose

. After k steps of DP-SGD, we had 0(8\/2]( In(1/6) + k Z: i ,0)

» The extra k seems unnecessary advanced composition is too lose.

Graph for 0.1x, 0.14/2x In(1000)

Graph for 0.1x, 0.11/2x In(1000) + x(e%! — D)/ + 1)
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Advanced composition
Proof sketch

14 1 1
Ay A, A, — eo®

T T R B T T T T T

h4! Y2 B4 ] k b(d\)
» Privacy random variable of composition: -\
k k
PrlA.(D) =t
R=Ylog( g i) = SR
_— PriA(D’) = t] P

« If R, € [—¢, €], 0-mean, conditionally independent, we get 0(8\/%)

. With bias, we get O(e\/k )



Advanced composition

Proof sketch
* Privacy random variable of composition: ¢
k k
PriA(D) =t
R=Ylog( LAADI =1 ) _ 5 s Y e
n PrlA(D’) = t] ‘= ¢ < 'g

« What is the bias i.e. E[R] = ?

(¢*-)
« E[£]=E,_[log(Ply = 1]/P[y’ = 1])] g ¢

« wherey = A(D)andy = A(D’)

e Let’s compute it



Advanced composition A

Proof sketch .

3

. Worst-case: DKL<y y’) <el—-1)

« KL-divergence between two Laplace distributions with different means

Quz el
. DKL(Laplace(,ul, D) || Laplace(u,, b)) = @ + e lmmmllb 1.

c =¢g+e =1~ 0(e)

« After k rounds, 0(8\/% + k) = O(ek). Need to set e = 1/



Advanced composition Fh o+ ESe
Proof sketch

« KL-divergence between two Gaussian distributions with different means

) 2
. DKL(/V(ﬂpﬁz) | A (us, 02)) ( 20/42) ~ OCCC )

Ay\/2In(1.2575)
E

» After k rounds, 0(8\/% + £%k). Sufficient to set & = 1/\/%!

. = O(e?) sincerecall 6 =



Advanced composition (¢

Geometric intuition for gaussians
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Gaussian
Differential Privacy

PRIVACY

ACCURACY




f-DP

Most general privacy definition

« Definition. Given a function f, we

say an algorithm is f-DP if the
tradeoff curve of an optimal
distinguisher is strictly above f.

.
[ :
.
.
- :
.
@ :
.
World 1: — e |
. .
.
.
.
® -
.
[ :
- .
Data oroviders : & Data usel
u
--------------------------------- - .
= answer
A —
: a8
.
.
.
) :
) .
World 2: - oot If 3
.
- -
.
.
.
.
Data oroviders

1.0

\ R :.
0.8 \n

type II error
o
(=2}

=
e~
1

0.2 1

0.0

type I error






1.0 'flvxi\ntercept—d —
f-DP 0.8
. . § 0.6 - O”s,

Generalization (¢, 5)-DP o

Ro4]  \swem—e NE
* Prop 2.5 [WZ10]. Ais (g, 0)-DP iff it 02

satisfies f, s-DP for oo
’ 0.0 0.2 0.4 0.6 0.8 1.0

fes=max(l —6—e‘x, (1 —-0—x)/e) | ey

— 1-GDP

Supporting linear functions

« Prop 2.12 [DRS19] A is f-DP iff it satisfies
(¢, 04(€))-DP for Ve > 0 and

ole) = 1 +f*(—e).



https://arxiv.org/abs/0811.2501
https://arxiv.org/pdf/1905.02383

Gaussian-DP

 Definition. A is ¢-GDP if it satisfiesf;t-DP
forf, = T (A(0,1) , N (u,1))

Prl[A(D) = t] < Pr{/(0,1) = 1] — ex
* PrlAD) =1 ~ PN (u,1) =1

e a(t) =1 —®(7) and f(t) = O(t — u)

type II error
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_ (>
Gaussian-DP | — -
—

Gaussian mechanism

 Definition. A is ¢-GDP if it satisfiesfﬂ
-DP for f, = T (A#(0,1) , #(u,1))

Theorem. Gaussian mechanism m
Given f: 2" — R? with A bounded #,-sensitivity, )

fD) +.4 (0, 21, ) is p-GoP () (Y




Gaussian Differential Privacy e CADP

Tight composition

Theorem. GDP Composition AE
A

Composition of A; 0 A,... o A;, each of which is y;
: k )
-GDP is \/ 2. Hi-GDP.







Gaussian Differential Privacy

Canonical f

Theorem 3.4 [DRS19] Central limit theorem of composition

Given some regularity assumptions, composition of A| ¢ A,... ° A,
each of which is f,-DP is approximately x-GDP for

2V forx; = — fol log|f(x)|dx and k, = — fol log? | £(x) | dx.

Ki — K

M:


https://arxiv.org/pdf/1905.02383

Gaussian Differential Privacy

Canonical f é P. = gms J ten
1.0 |

— 10 Composition Y - (
—— GDP from CLT L

T Optimal DE bound * In stats, combining may random
variables &~ Gaussian by CLT. In DP,
composing many DP steps ~gDP.

« Caution: just like CLT sometimes
fails, Thm 3.4 is sometimes fails and
underestimates privacy [GLW21].

0 300 1000 1500 2000
DPSGD steps


https://arxiv.org/pdf/2106.02848

Gaussian Differential Privacy

Amplification by subsampling

1 N

fo(™) A

Co(f)

« Define f (x) = gf(x) + (1 — g)(1 — x)
andfq_1

* Theorem 4.2 [DRS19]
Composing g-sampling with f-DP, is
(min(f,.f, 1)) **-DP

« Unfortunately, no closed form for GDP,
compute numerically.


https://arxiv.org/pdf/1905.02383

Private SGD

Using Gaussian-DP

Corollary 5.4 [DRS19] Subsampled Composition

Suppose each A; is u-GDP. Then, composing g-
sampled A; is asymptotically

(q\/%\/e/ﬂq)(gﬂ/ 2) + 3®(—p/2) — 2 )-GDP.

97.0% accuracy, oc=0.7

—— 1.13-GDP by CLT
—— (g,6)-DP by MA

© o o
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Type | error

Tightest privacy bound [B+’20].
But, only asymptotically valid.


https://arxiv.org/pdf/1905.02383
https://hdsr.mitpress.mit.edu/pub/u24wj42y/release/7

Odds ratio

If you do not participate,
39 out of 100 potential reports will lead your
manager to believe you responded NO.

If you participate,
61 out of 100 potential reports will lead your
manager to believe you responded NO.

(a) ODDS-TEXT

If you do not participate,
39 out of 100 potential reports

will lead your manager to
believe you responded NO.
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Aside: Communicating Privacy

£

If you

will lead your manager to
believe you responded NO.

REEEERRERERE.

(b) ODDS-VIS

’
out of 100 potential reports

|0

pe

B ————

How do you communicate
privacy risk to your friends?

Excellent study: [N+UseNIX'23]

Using odds ratio leads to
increased understanding of risks
and willingness to share data.

How to explain e-DP and

u-GDP? Need to incorporate
prior knowledge of attacker.


https://www.usenix.org/system/files/usenixsecurity23-nanayakkara.pdf

PRIVACY

Privacy Auditing

ACCURACY




Drawbacks of pure theory

« Bounds always loose
\

* people assume this and train models with high theoretical &

[ ok )
« Maybe my implementation is incorrect A MLv

* Why should | trust your claim?

Backpropagation Clipping for Deep Learning with Differential Privacy

Timothy Stevens’ Ivoline C. Ngong* David Darais Calvin Hirsch
University of Vermont University of Vermont Galois, Inc. Two Six Technologies
David Slater Joseph P. Near
Two Six Technologies University of Vermont

* In 2022, proposed to integrate clipping
into forward/backward pass directly

 SOTA accuracy wit 30x smaller ¢




P riva cy Au d iti n g Debugging Differential Privacy: A Case Study for Privacy Auditing

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, Nicholas Carlini
Google Research

« Consider the following test:

D MNIST dataset: 60k images

D’ £ Add (x', ).

Train a CNN & using [S+22] to get 0.98
acc and (0.21, 10-5)-DP.

Check Zy(x’,y") < 7. If D’ will be smaller.



N - MN (ST 60K
{ '\SUW'S'Q vvmc)-"@'fd

» Some decisions to make

. Whicalled canary ZA
e i

* insert an unique image which model is
likely to memorize. i.e. insert a backdoor
attack —
7\

« Try a few images (~25) on an initial 2k (L

Privacy Auditing

training runs. ED
\ [ | ; A ]
« chose to insert a “checkerboard” patternl ' ° w_-_l__>
In X and incorrect label as y 0 I(Tr






point, averaged ¢
data sampled fror

Privacy Auditing l”“ e

-.-Fﬁ data sample x
% ;#f‘r

 What makes a good canary?

« Memorable to the model n Hypical

Easy to learn
data sample x
[ “data pOisoning” Or “badeoor Error of models on x
insertion ’ attaC kS make for great § Target Label:0 Backdoor Trigger: n
canaries g

Clean Samples

S]] S] & e

Poisoned Samples DNN

Training

® — AR~

e Pt O"':/'O""O —— Label2

o O XX
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= .“ OO O Label 0
L 1] DNN



Privacy Auditing

e Some decisions to make

» Measure loss on canary 3.0% |~ Threshold |
= - Baseline //./‘/-
. Repeét 100k on D and 100k & 2 0% //
o Classifyas D' if £y(x,y) <t :
0.5% i
« Which 7?7 Pick best using validation ||
o D

training runs.

Loss of model on poisoned example




Privacy Auditing
A =

» Claimed privacy: (0.21, 10-5)-DP.

~ 004922

—

type 11 erll

« With a threshold T = 2.64 , attack had true
positive rate of 4.922% and false positive

rate of 0. 174‘V N
i o ~ ©0.00\3

* |s this possible?

00 02 04 06 08 1.0
type | error



Privacy Auditing

e« We have claimed 2 =-0.00174 ang

: a = 1-4.922/100 = 0.95078: o |
T 0.0 . : i~
° ave Clalmed pI’IVaCy Of (0.21, 10—5)—DF)_ 0.0 0.2 0.4 0.6 8 1.0

type I error

. f>m = — ¢9210.95078 , (1 — 107> — 0.95078)/("*!)
.03988885074

* Can be due to sampling? o c Co[_rp{»f /j
b g ecy.fl

type II error




Privacy Auditing

Define X = 1{predicted D |was D’} on a
training run.

False positive rate a = E[X] i.e. X ~ Ber(a)

We have 100k iid samples
Xl’ .o ’X10Ok ~ Ber(a)

How far can empirical & and true a be?

type II error
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Aside: Clopper-Pearson “exact” method

_ 1 - :
- V=~ Zilei, where X; ~ Bern(a). a is unknown.

Given Y for n observations, what can we say about a?

Clopper-Pearson gives interva@ith probability > 1 —p

No closed form - need to compute numerically.




Privacy Auditing

We have claimed f# = 0.00174 and
a = 1-4.922/100 = 0.95078.

We have claimed privacy of (0.21, 10-5)-DP.

= 0.03988885074
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B > max(l — 107 — ¢%210.95078 , (1 — 107 — 0.95078)/(e"*")

By Clopper-Pearson, at < 0.95509, #~ > 0.00274 with p = 1071°

Later, they found a bug and retracted the paper. Very common in DP!!

1.0



Improvements: better stats

confidence interval
 Incorporate priors [ZB+23]:
» Use Bayesian approach
« Compute joint posterior of a, 3, €

e Your favorite stats trick

1

I'PR

FPR.

FPR_

0

0

FNR_-

FNR,
ENR

) 1


https://arxiv.org/pdf/2206.05199

Improvements: picking canaries

1.0 7
mterce;

* Picking the right (x', y’) is an art
« \ery similar to backdoor attacks

e Goal is to test for conditional memorization

type II error

 Means searching for a “planted signal” 02

 when detected, we are sure. i.e. low type | 0.0

type I error

e but can miss a lot i.e. high type Il

e« whatif o > a?



Gaussian Membership Inference

More improvements

 Test for GDP instead:

« Suppose some Gaussian mechanism claims (g, 0)-DP ©
 Calculate corresponding y-GDP

 Check if empirical a, f allows such u

M:

 Reduces number of runs 10,000x JN+23

o~ I(1 - a*) ~ &)

1.0

95.0% accuracy, c=1.3

\ —— 0.23-GDP by CLT
\ ——= (1.19,1e-5)-DP by MA
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Empirical Epsilon
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—— (&,6) — DP (CP)
—=— f—DP (CP)
----- Upper bound

o Ll
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Number of observations

de=6


https://arxiv.org/pdf/2302.07956




