CSCI 699: Privacy Preserving Machine Learning - Week 4

Gaussian DP and Privacy Auditing

Approximate differential privacy

[Dwork and Roth 2014]

Let us draw a variable $t \sim A(D)$. Then the privacy loss random

variable.
$$\mathscr{L}_{D,D'} = \ln \left(\frac{Pr[A(D) = t]}{Pr[A(D') = t]} \right)$$

A satisfies (ε, δ) -DP iff for any similar/neighboring datasets $D, D' \in \chi^n$ we have $\Pr\left[\mathscr{L}_{D, D'} \geq \varepsilon\right] \leq \delta$

Graph for 0.1x, $0.1\sqrt{2x \ln(1000)} + x(e^{0.1} - 1)/(e^{0.1} + 1)$ + 140

+ 120

100

80

60

40

20

20

300

400

500

600

700

300

500

1000

1100

1200

1300

1400

1500

• Composition: simple - $k\varepsilon$ -DP

Theorem. Advanced Composition

A combination of $A_1 \circ A_2 \circ A_k$, each of which is (ε, δ) -DP is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP where

$$\tilde{\varepsilon} = \varepsilon \sqrt{2k \ln(1/\delta')} + k \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$
 and $\tilde{\delta} = k\delta + \delta'$

For any choice of δ' .

Subsampling amplification

Theorem. Subsampling Amplification

Composing an (ε, δ) -DP A with a sampling rate of q results in an $(\tilde{\varepsilon}, \tilde{\delta})$ -DP algorithm where

$$\tilde{\varepsilon} = \log(1 - q + qe^{\varepsilon}) = O(q\varepsilon)$$
 and $\tilde{\delta} = q\delta$

Private SGD with clipping L1 norm:

•
$$\theta_t = \theta_{t-1} - \gamma \text{Clip}_{\tau} \left(\nabla_{\theta} \mathcal{E}(f(x_t; \theta), y_t) \right) + Lap(2\tau/\varepsilon)$$

- With q=1/n, k rounds satisfies $(O(\varepsilon/n\sqrt{k\ln(1/\delta)}),\delta)$ -DP for any $\delta>0$.
- Can also clip L2 norm and use Gaussian mechanism.
- Q: what did you observe empirically L1 vs. L2?

Poisson subsampling disadvantages

$$\bullet \ \theta_t = \theta_{t-1} - \gamma \left(\left[\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathrm{Clip}_\tau \left(\nabla_\theta \mathcal{E}(f(x_t;\theta), y_i) \right) \right] + \mathcal{N}(0, \tau^2 \rho^2) \right)$$

• I cannot set $\rho \propto |\mathcal{B}|^{-1}$ - mechanism cannot be data-dependent.

It should work for the worst case i.e. when $|\mathcal{B}| = 1$.

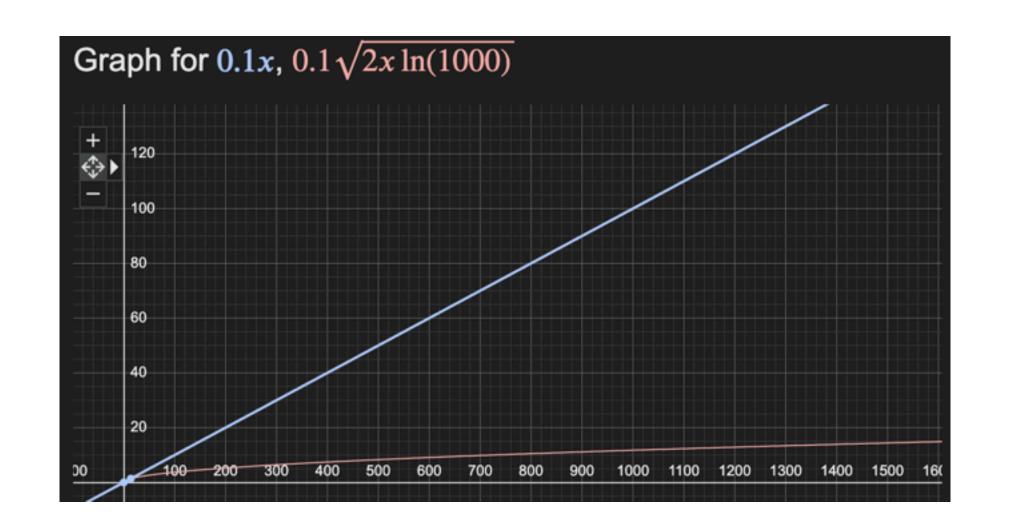
Agenda for todayAnalyzing privacy of ML training

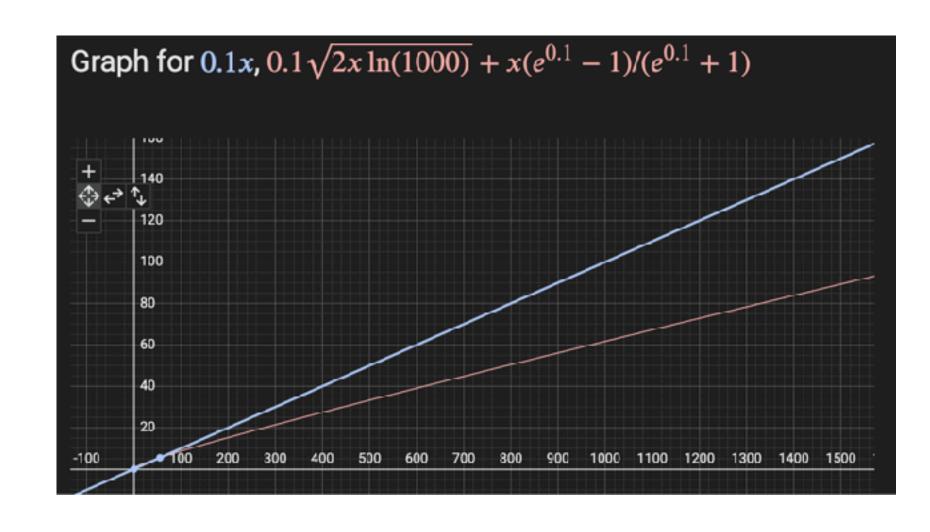
- Improving composition
- Gaussian DP
- Privacy Auditing
- HW1 solutions

Better composition

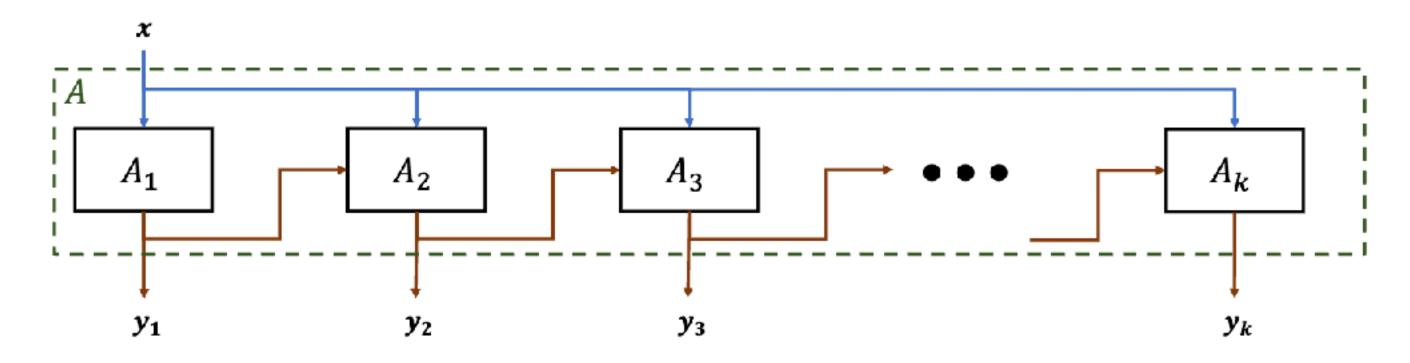
Approximate DP analysis is loose

- After k steps of DP-SGD, we had $O(\varepsilon\sqrt{2k\ln(1/\delta)} + k\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}, \delta)$
- The extra k seems unnecessary advanced composition is too lose.





Proof sketch



Privacy random variable of composition:

$$R = \sum_{i=1}^{k} \log \left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]} \right) = \sum_{i=1}^{k} R_i$$

- If $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent, we get $O(\varepsilon \sqrt{k})$
- With bias, we get $O(\varepsilon \sqrt{k} + E[R] \cdot k)$

Proof sketch

Privacy random variable of composition:

$$R = \sum_{i=1}^{k} \log \left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]} \right) = \sum_{i=1}^{k} R_i$$

- What is the bias i.e. $E[R_i] = ?$
- $E_t[\mathcal{L}] = E_{t \sim y}[\log(P[y = t]/P[y' = t])] = \text{KL}(y||y')$
 - where y = A(D) and y' = A(D')
- Let's compute it

Proof sketch

- Worst-case: $D_{\mathrm{KL}}(yy') \leq \varepsilon(e^{\varepsilon}-1)$
- KL-divergence between two Laplace distributions with different means

•
$$D_{\text{KL}}\left(\text{Laplace}(\mu_1, b) \mid \text{Laplace}(\mu_2, b)\right) = \frac{|\mu_1 - \mu_2|}{b} + e^{-|\mu_1 - \mu_2|/b} - 1.$$

- $= \varepsilon + e^{-\varepsilon} 1 \approx O(\varepsilon)$
- After k rounds, $O(\varepsilon\sqrt{k} + \varepsilon k) = O(\varepsilon k)$. Need to set $\varepsilon = 1/k$.

Proof sketch

KL-divergence between two Gaussian distributions with different means

•
$$D_{\text{KL}}(\mathcal{N}(\mu_1, \sigma^2) || \mathcal{N}(\mu_2, \sigma^2)) = \frac{(\mu_1 - \mu_2)^2}{2\sigma^2}$$
.

$$\bullet = O(\varepsilon^2) \quad \text{since recall } \sigma = \frac{\Delta_2 \sqrt{2 \ln(1.25/\delta)}}{\varepsilon}$$

• After k rounds, $O(\varepsilon\sqrt{k} + \varepsilon^2 k)$. Sufficient to set $\varepsilon = 1/\sqrt{k}!$

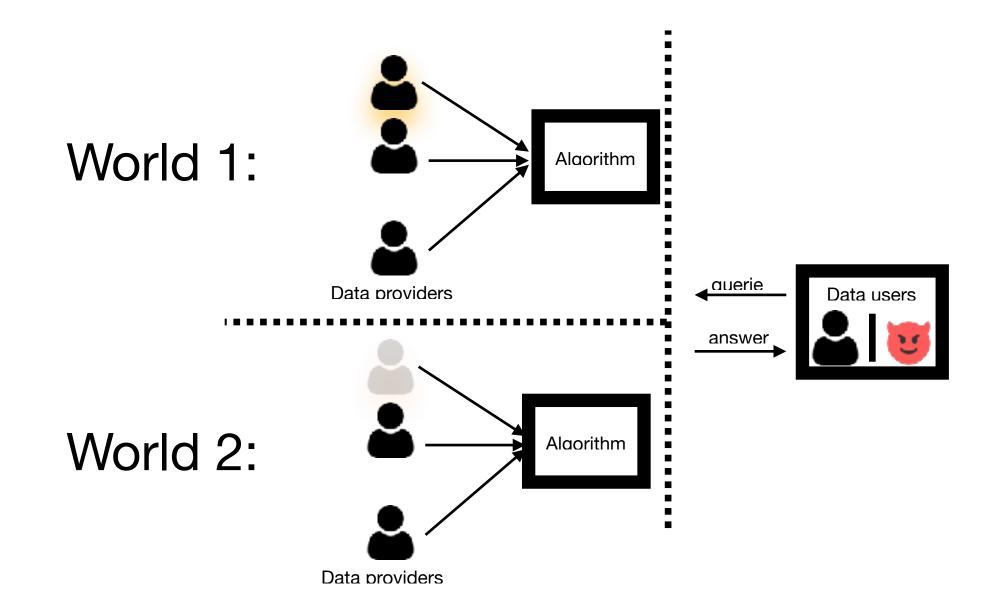
Geometric intuition for gaussians

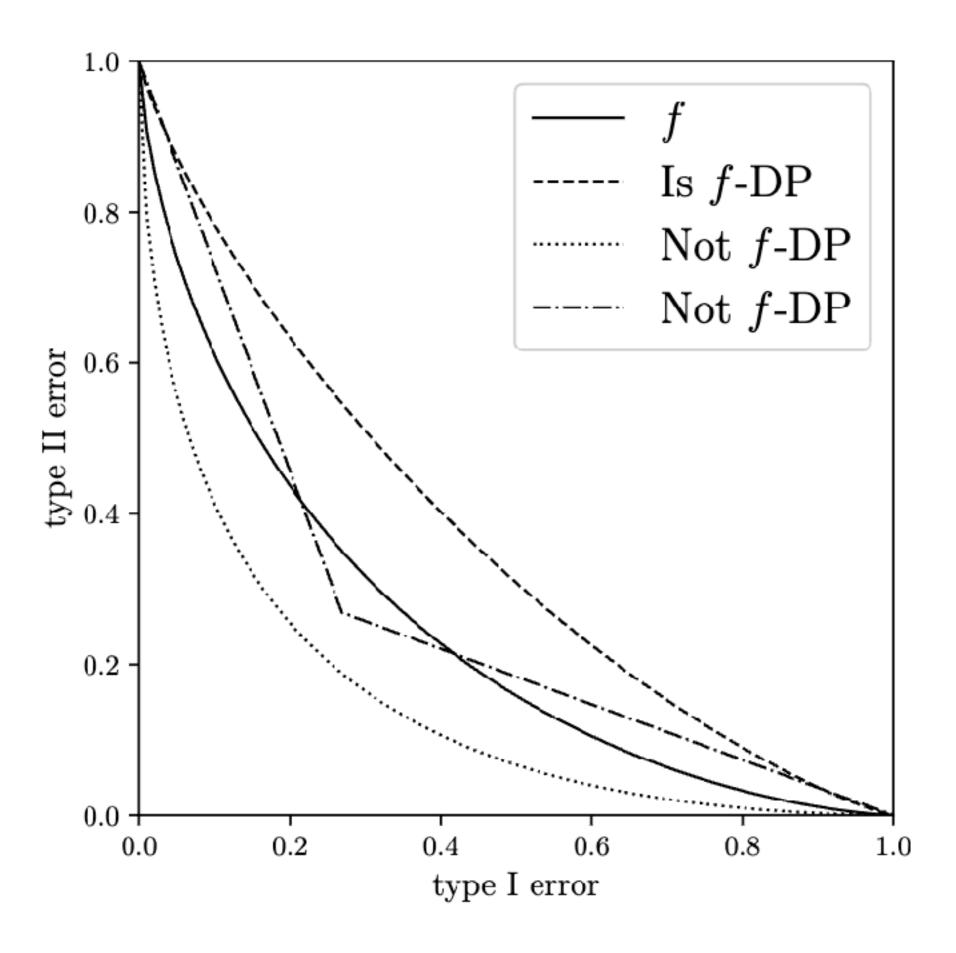
Gaussian Differential Privacy

f-DP

Most general privacy definition

• **Definition.** Given a function f, we say an algorithm is f-DP if the tradeoff curve of an optimal distinguisher is strictly above f.



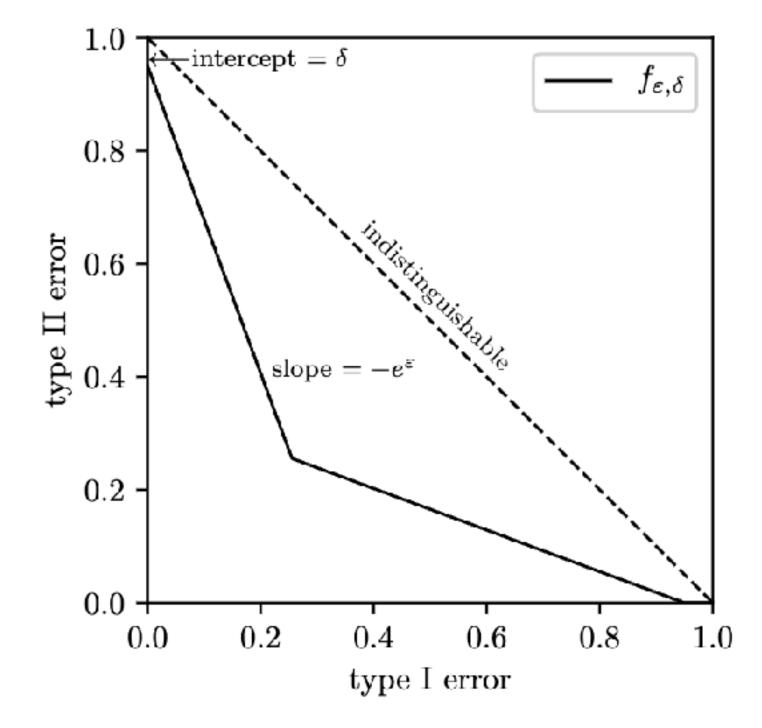


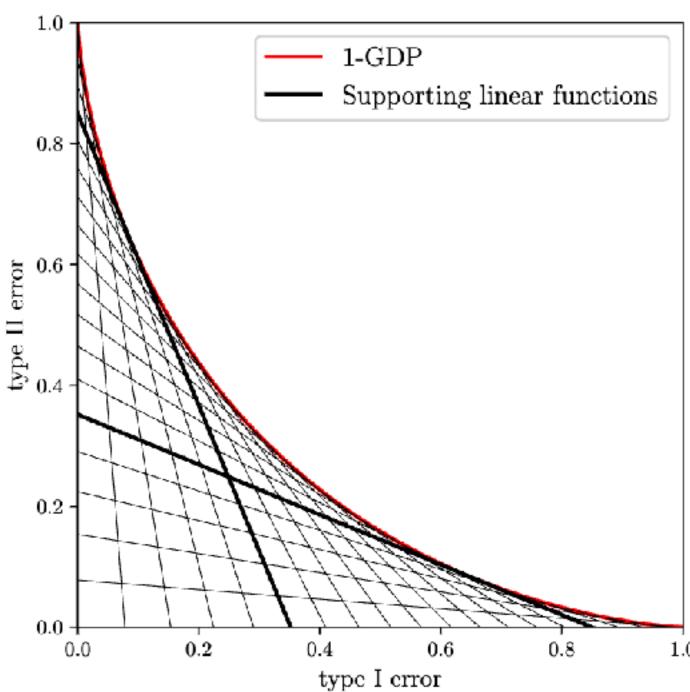
f-DP

Generalization (ε, δ) -DP

• **Prop 2.5** [WZ10]. A is (ε, δ) -DP iff it satisfies $f_{\varepsilon, \delta}$ -DP for $f_{\varepsilon, \delta} = \max(1 - \delta - e^{\varepsilon}x \;,\; (1 - \delta - x)/e^{\varepsilon})$

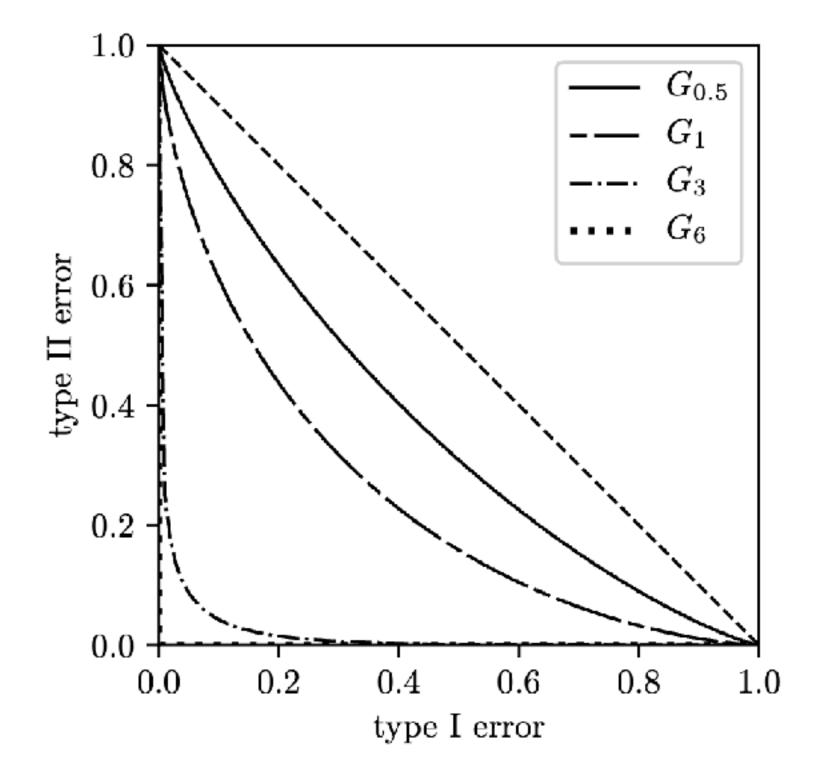
• **Prop 2.12** [DRS19] A is f-DP iff it satisfies $(\varepsilon, \delta_f(\varepsilon))$ -DP for $\forall \varepsilon \geq 0$ and $\delta_f(\varepsilon) = 1 + f^*(-e^{\varepsilon})$.





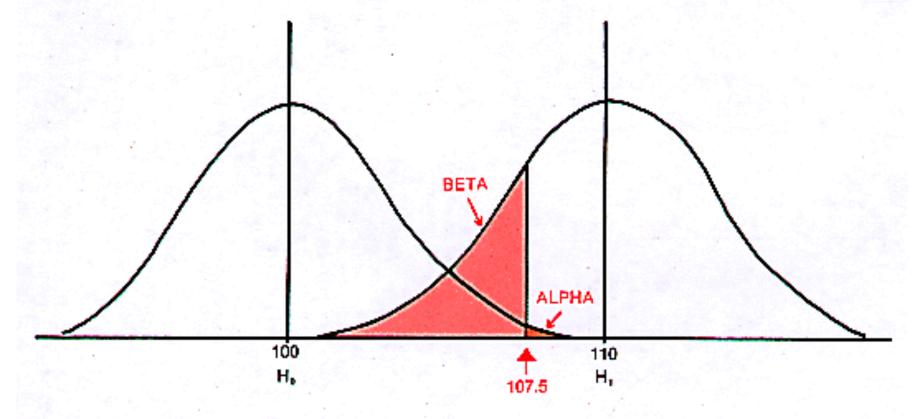
Gaussian-DP

- **Definition.** A is $\mu\text{-GDP}$ if it satisfies $f_{\mu}\text{-DP}$ for $f_{\mu}=T\left(\mathcal{N}(0,\!1)\;,\;\mathcal{N}(\mu,\!1)\right)$



•
$$\frac{Pr[A(D) = t]}{Pr[A(D') = t]} \le \frac{Pr[\mathcal{N}(0,1) = t]}{Pr[\mathcal{N}(\mu,1) = t]} = \exp\left(\frac{1}{2}(\mu^2 - 2\mu t)\right)$$

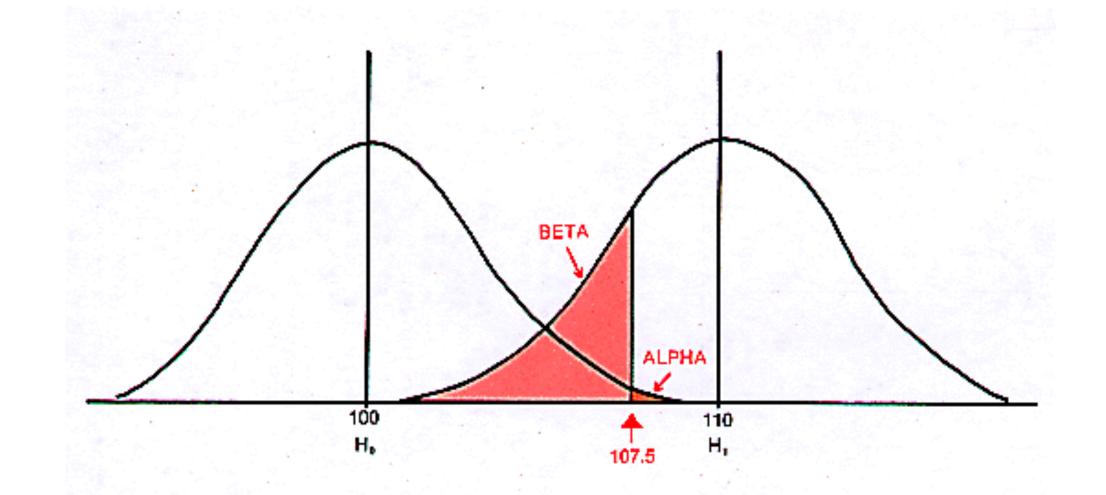
•
$$\alpha(\tau) = 1 - \Phi(\tau)$$
 and $\beta(\tau) = \Phi(\tau - \mu)$



Gaussian-DP

Gaussian mechanism

- **Definition.** A is μ -GDP if it satisfies f_μ -DP for $f_\mu = T\left(\mathcal{N}(0,1)\;,\;\mathcal{N}(\mu,1)\right)$



Theorem. Gaussian mechanism

Given $f:\mathcal{X}^n\to\mathbb{R}^d$ with Δ bounded \mathscr{C}_2 -sensitivity, $f(D)+\mathcal{N}\left(0\;,\;\frac{\Delta^2}{\mu^2}I_d\right)$ is $\mu\text{-GDP}.$

Gaussian Differential Privacy Tight composition

Theorem. GDP Composition

Composition of
$$A_1 \circ A_2 \ldots \circ A_k$$
, each of which is μ_i -GDP is $\sqrt{\sum_{i=1}^k \mu_i^2}$ -GDP.

Gaussian Differential Privacy

Canonical f

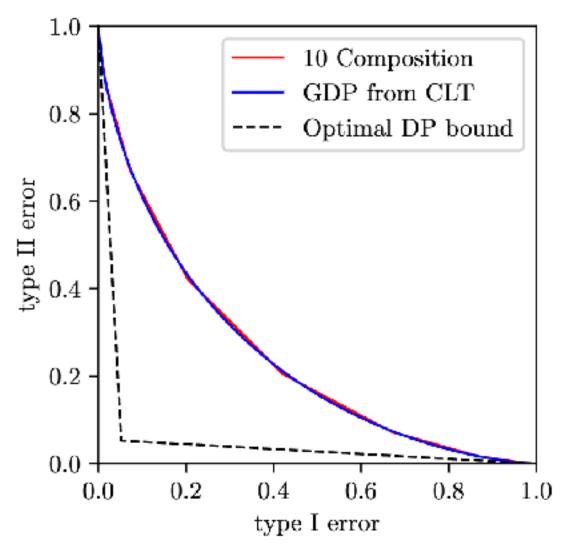
Theorem 3.4 [DRS19] Central limit theorem of composition

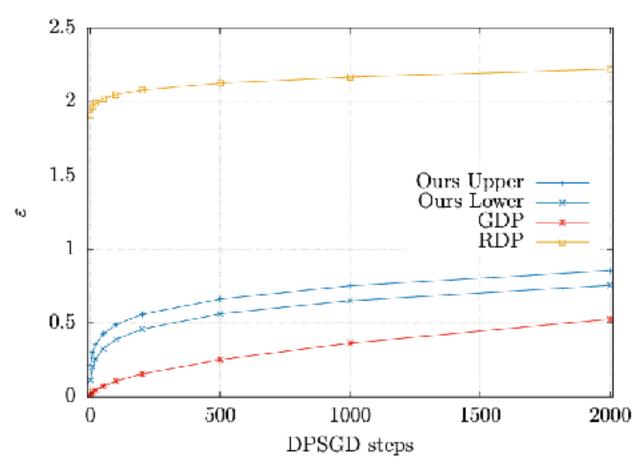
Given some regularity assumptions, composition of $A_1 \circ A_2 \dots \circ A_k$, each of which is f_i -DP is approximately μ -GDP for

$$\mu = \frac{2\sqrt{k}\kappa_1}{\kappa_1 - \kappa_2} \text{ for } \kappa_1 = -\int_0^1 \log|f'(x)| \, dx \text{ and } \kappa_2 = -\int_0^1 \log^2|f'(x)| \, dx.$$

Gaussian Differential Privacy

Canonical f



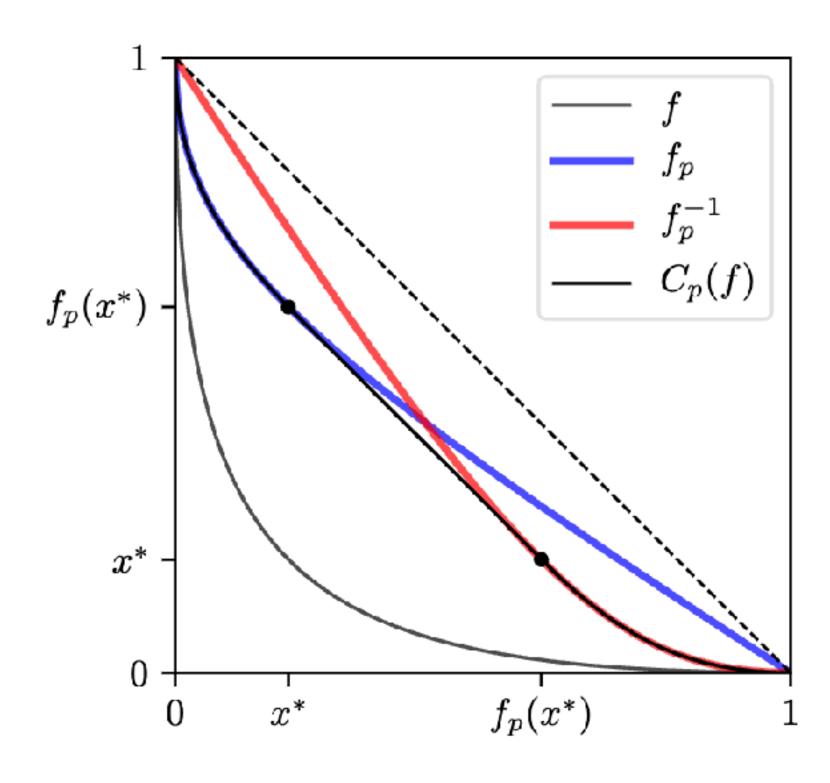


 In stats, combining may random variables ≈ Gaussian by CLT. In DP, composing many DP steps ≈gDP.

• Caution: just like CLT sometimes fails, Thm 3.4 is sometimes fails and underestimates privacy [GLW21].

Gaussian Differential Privacy

Amplification by subsampling



- Define $f_q(x) = qf(x) + (1-q)(1-x)$ and f_q^{-1}
- Theorem 4.2 [DRS19] Composing q-sampling with f-DP, is $\min(f_p,f_p^{-1})$ **-DP
- Unfortunately, no closed form for GDP, compute numerically.

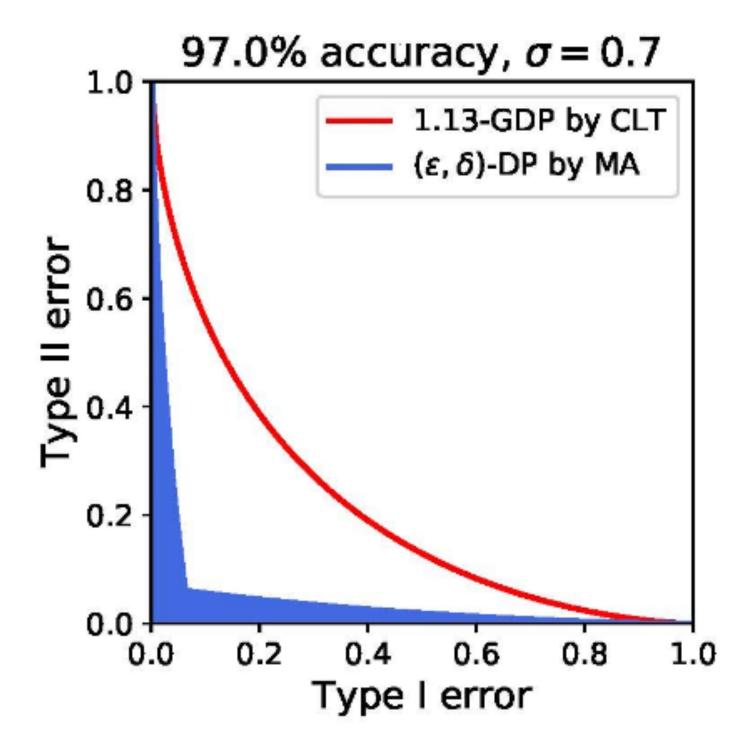
Private SGD

Using Gaussian-DP

Corollary 5.4 [DRS19] Subsampled Composition

Suppose each A_i is μ -GDP. Then, composing q-sampled A_i is asymptotically

$$(q\sqrt{k}\sqrt{e^{\mu^2}}\Phi(3\mu/2) + 3\Phi(-\mu/2) - 2)$$
-GDP.



Tightest privacy bound [B+'20]. But, only asymptotically valid.

Aside: Communicating Privacy

Odds ratio

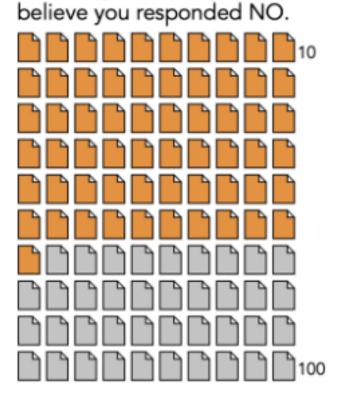
If you do not participate,

39 out of 100 potential reports will lead your manager to believe you responded NO.

If you participate,

61 out of 100 potential reports will lead your manager to believe you responded NO.

If you participate, 61 out of 100 potential reports will lead your manager to



(a) ODDS-TEXT

(b) ODDS-VIS

- How do you communicate privacy risk to your friends?
- Excellent study: [N+UseNIX'23]
- Using odds ratio leads to increased understanding of risks and willingness to share data.
- How to explain ε -DP and μ -GDP? Need to incorporate prior knowledge of attacker.

Drawbacks of pure theory

- Bounds always loose
 - people assume this and train models with high theoretical arepsilon
- Maybe my implementation is incorrect
- Why should I trust your claim?

Backpropagation Clipping for Deep Learning with Differential Privacy

Timothy Stevens* Ivoline C. Ngong* David Darais Calvin Hirsch
University of Vermont University of Vermont Galois, Inc. Two Six Technologies

David Slater Joseph P. Near
Two Six Technologies University of Vermont

- In 2022, proposed to integrate clipping into forward/backward pass directly
- SOTA accuracy with 30x smaller ε

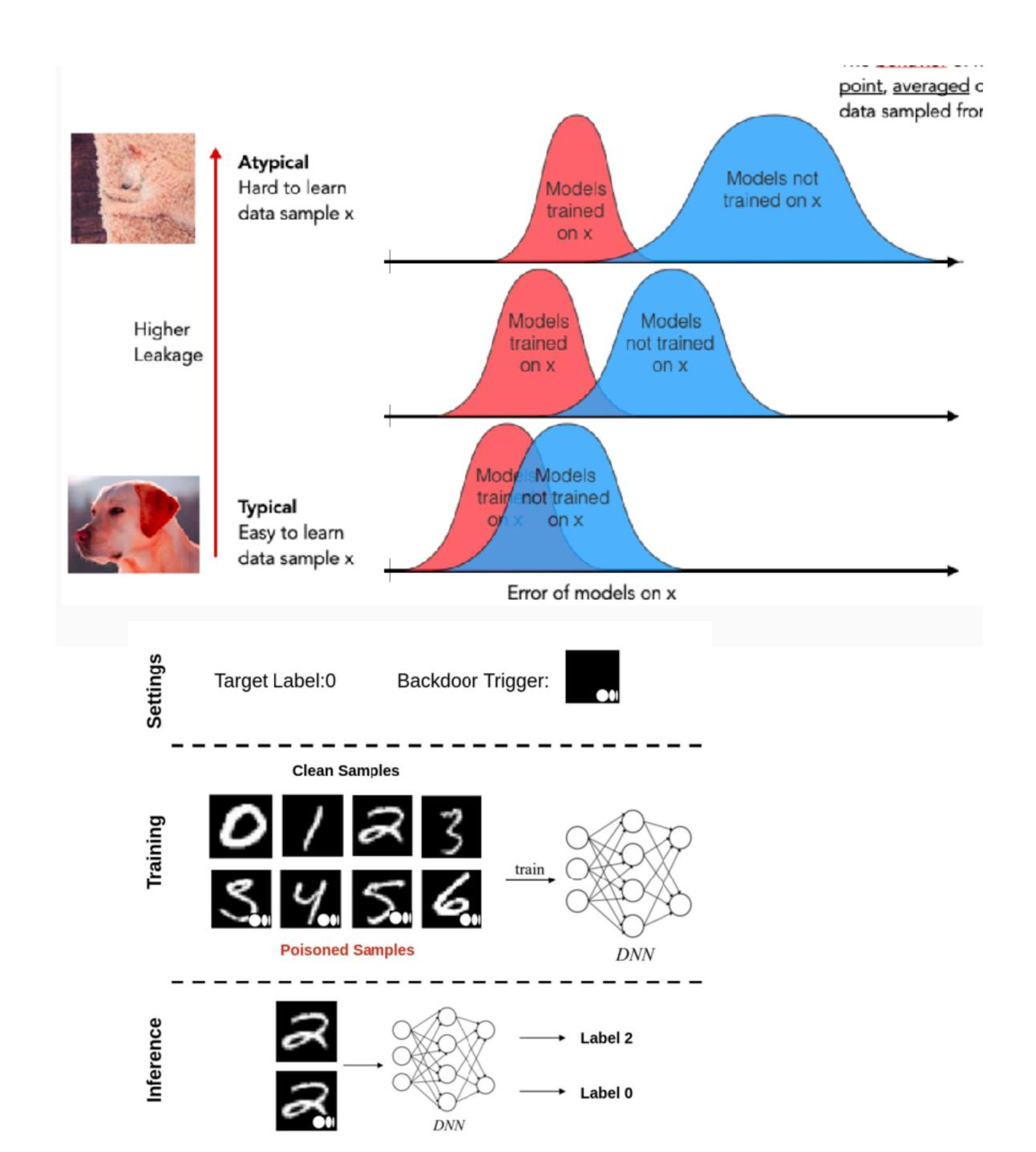
Debugging Differential Privacy: A Case Study for Privacy Auditing

Florian Tramèr, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, Nicholas Carlini Google Research

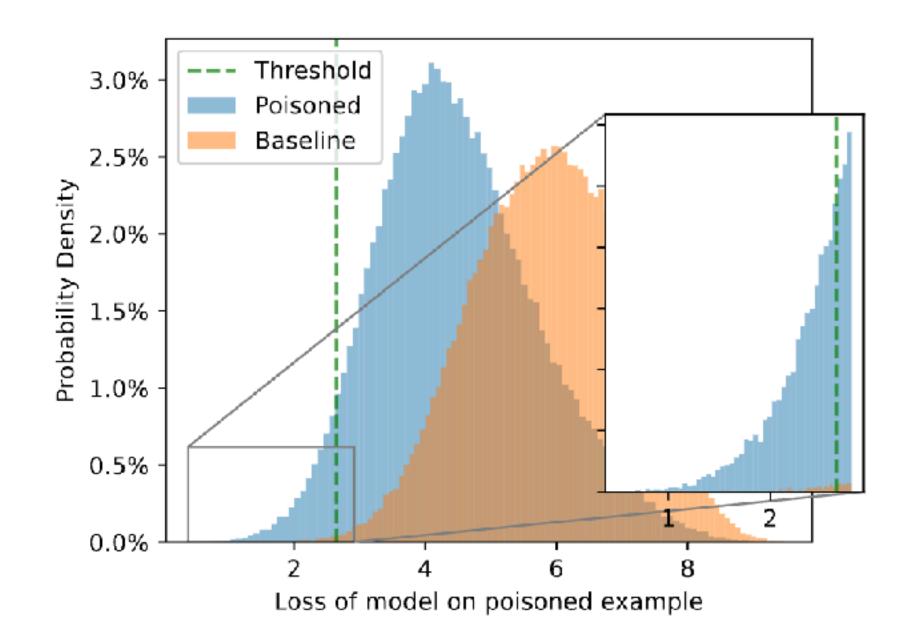
- Consider the following test:
 - D = MNIST dataset: 60k images
 - D' = Add (x', y').
 - Train a CNN θ using [S+22] to get 0.98 acc and (0.21, 10–5)-DP.
 - Check $\ell_{\theta}(x', y') \leq \tau$. If D' will be smaller.

- Some decisions to make
 - Which (x', y')? Called canary
 - insert an unique image which model is likely to memorize. i.e. insert a backdoor attack
 - Try a few images (~25) on an initial 2k training runs.
 - chose to insert a "checkerboard" pattern in x and incorrect label as y

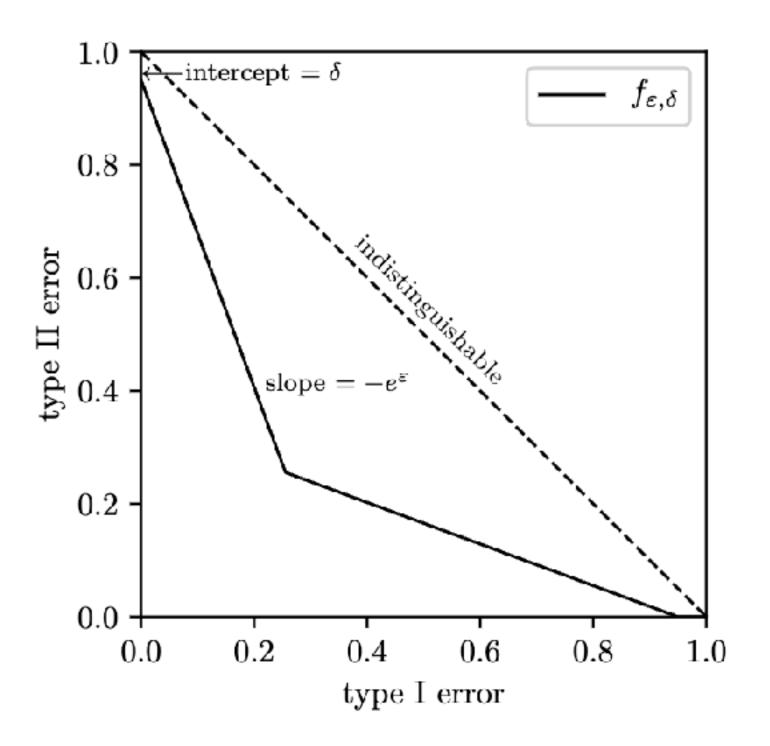
- What makes a good canary?
 - Memorable to the model
 - "data poisoning" or "backdoor insertion" attacks make for great canaries



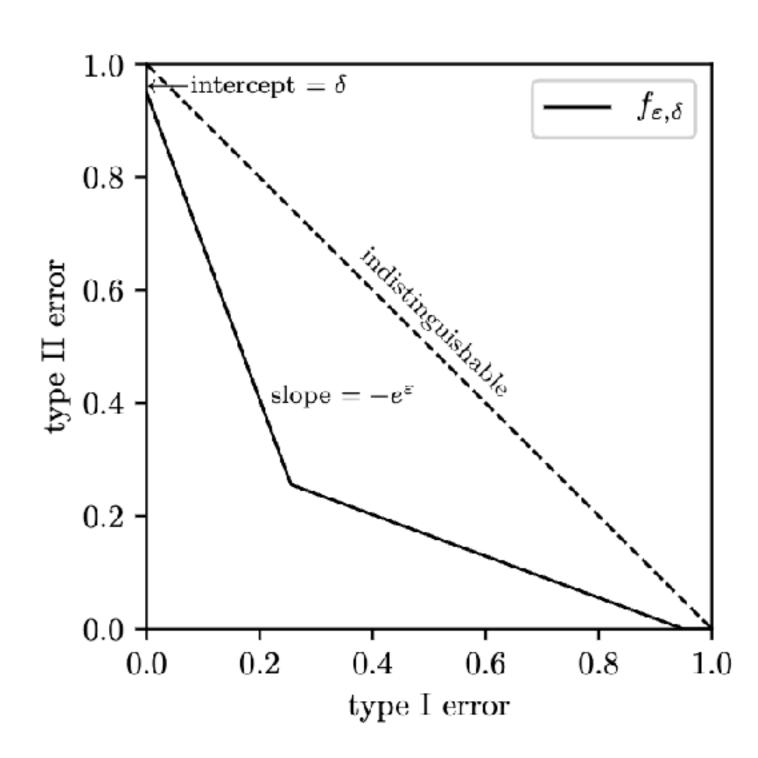
- Some decisions to make
 - Measure loss on canary $\ell_{\theta}(x', y')$
 - Repeat 100k on D and 100k on D'.
 - Classify as D' if $\ell_{\theta}(x', y') \leq \tau$
 - Which τ ? Pick best using validation training runs.



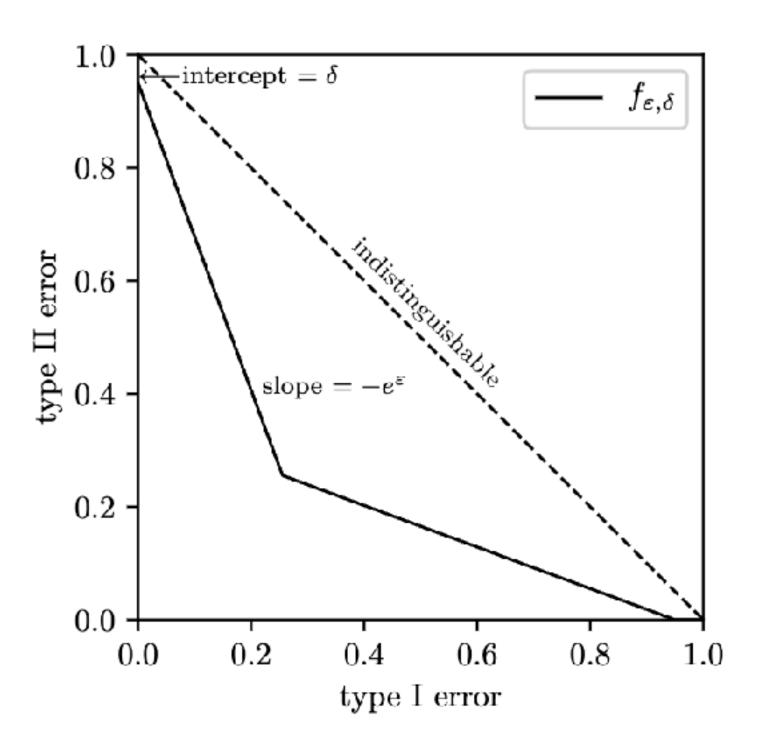
- Claimed privacy: (0.21, 10–5)-DP.
- With a threshold $\tau = 2.64$, attack had true positive rate of 4.922% and false positive rate of 0.174%.
- Is this possible?



- We have claimed $\beta = 0.00174$ and $\alpha = 1-4.922/100 = 0.95078$.
- We have claimed privacy of (0.21, 10–5)-DP.
- $\beta \ge \max(1 10^{-5} e^{0.21}0.95078, (1 10^{-5} 0.95078)/(e^{0.21})$ = 0.0398885074
- Can be due to sampling?



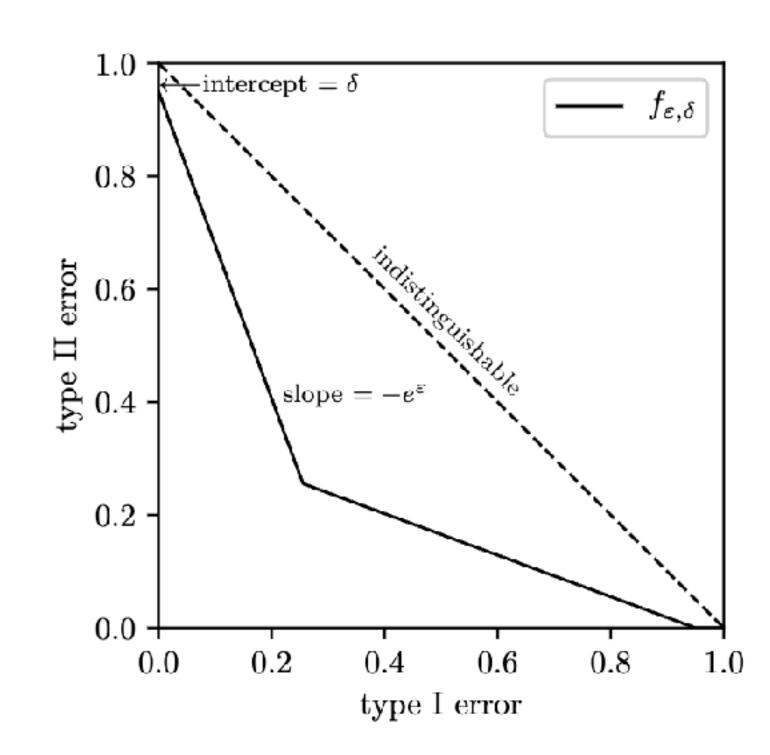
- Define $X=1\{ \text{predicted } D \mid \text{was } D' \}$ on a training run.
- False positive rate $\alpha = E[X]$ i.e. $X \sim \text{Ber}(\alpha)$
- We have 100k iid samples $X_1, ..., X_{100k} \sim \mathrm{Ber}(\alpha)$
- How far can empirical $\hat{\alpha}$ and true α be?



Aside: Clopper-Pearson "exact" method

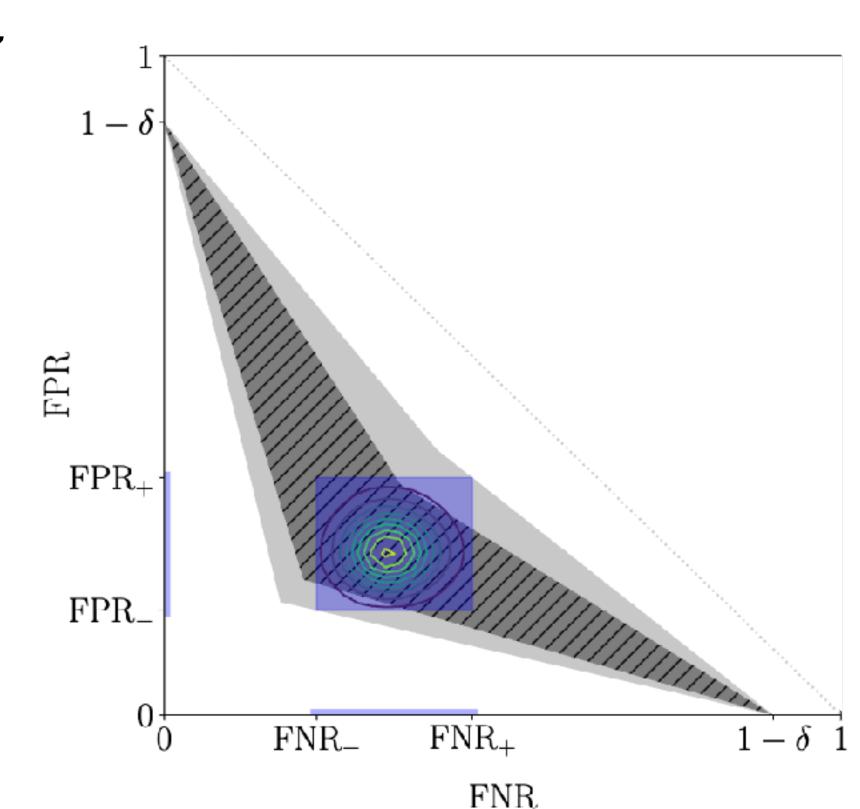
- $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Bern}(\alpha)$. α is unknown.
- Given Y for n observations, what can we say about α ?
- Clopper-Pearson gives intervals $\alpha \in [\alpha^-, \alpha^+]$ with probability $\geq 1-p$
- No closed form need to compute numerically.

- We have claimed $\beta = 0.00174$ and $\alpha = 1-4.922/100 = 0.95078$.
- We have claimed privacy of (0.21, 10–5)-DP.
- $\beta \ge \max(1 10^{-5} e^{0.21}0.95078, (1 10^{-5} 0.95078)/(e^{0.21})$ = 0.03988885074
- By Clopper-Pearson, $\alpha^+ \le 0.95509$, $\beta^- \ge 0.00274$ with $p = 10^{-10}$
- Later, they found a bug and retracted the paper. Very common in DP!!



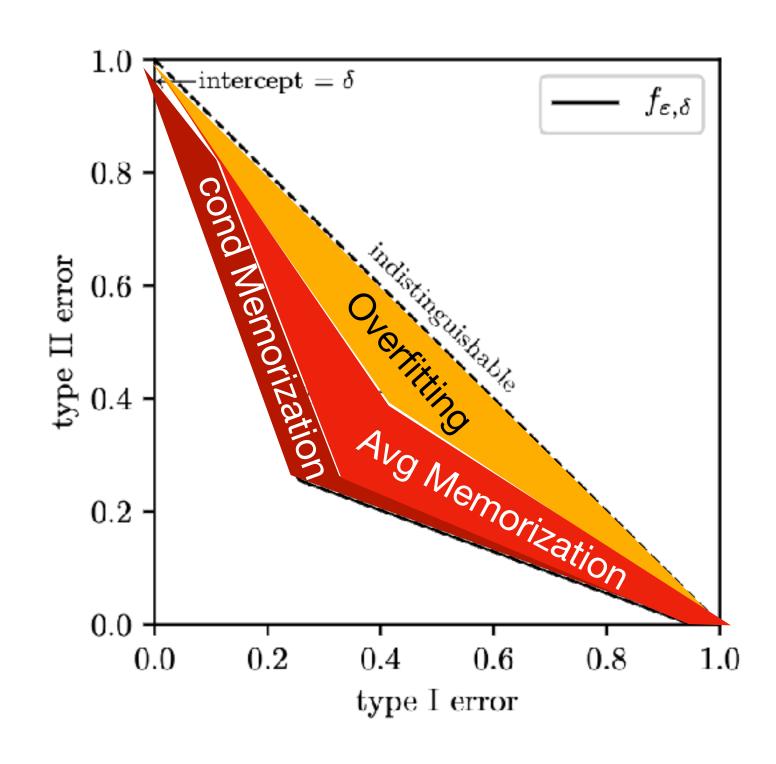
Improvements: better stats

- Do we really need α^+, β^- ?
 - . Directly bound $\log(\frac{1-\delta-\beta}{\alpha})$ using Log-Katz confidence intervals.
- Incorporate priors [ZB+23]:
 - Use Bayesian approach
 - Compute joint posterior of $\alpha, \beta, \varepsilon$
- Your favorite stats trick



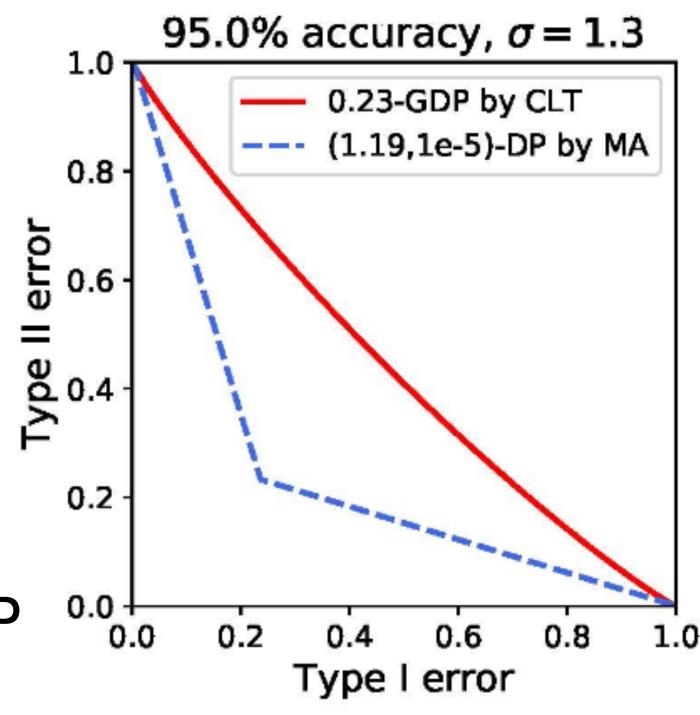
Improvements: picking canaries

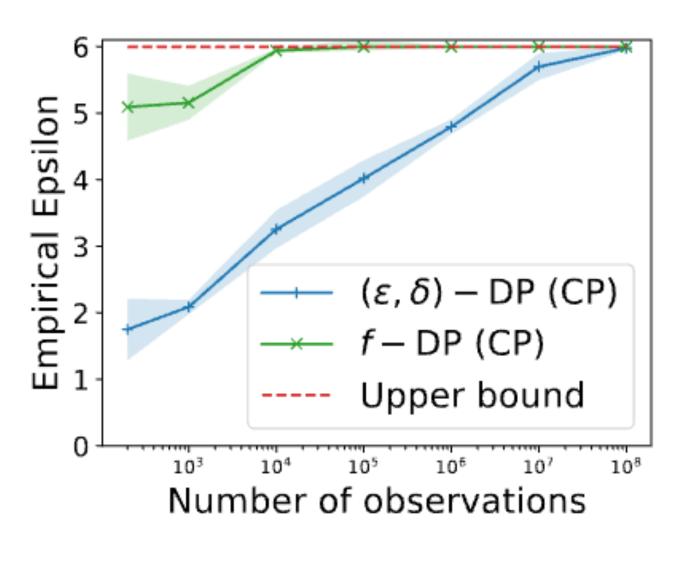
- Picking the right (x', y') is an art
 - Very similar to backdoor attacks
- Goal is to test for conditional memorization
- Means searching for a "planted signal"
 - when detected, we are sure. i.e. low type I
 - but can miss a lot i.e. high type II
 - what if $\delta \geq \alpha$?



Gaussian Membership Inference More improvements

- Test for GDP instead:
 - Suppose some Gaussian mechanism claims (ε, δ) -DP
 - Calculate corresponding μ -GDP
 - Check if empirical α , β allows such μ $\mu^- = \Phi^{-1}(1-\alpha^+) \Phi^{-1}(\beta^-)$
 - Reduces number of runs by 10,000x [N+23]





(d)
$$\varepsilon = 6$$