CSCI 699: Privacy Preserving Machine Learning - Week 4 Gaussian DP and Privacy Auditing Approximate differential privacy [Dwork and Roth 2014] Let us draw a variable $t \sim A(D)$. Then the privacy loss random variable. $$\mathscr{L}_{D,D'} = \ln \left(\frac{Pr[A(D) = t]}{Pr[A(D') = t]} \right)$$ A satisfies (ε, δ) -DP iff for any similar/neighboring datasets $D, D' \in \chi^n$ we have $\Pr\left[\mathscr{L}_{D, D'} \geq \varepsilon\right] \leq \delta$ Graph for 0.1x, $0.1\sqrt{2x \ln(1000)} + x(e^{0.1} - 1)/(e^{0.1} + 1)$ + 140 + 120 100 80 60 40 20 20 300 400 500 600 700 300 500 1000 1100 1200 1300 1400 1500 • Composition: simple - $k\varepsilon$ -DP #### Theorem. Advanced Composition A combination of $A_1 \circ A_2 \circ A_k$, each of which is (ε, δ) -DP is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP where $$\tilde{\varepsilon} = \varepsilon \sqrt{2k \ln(1/\delta')} + k \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$ and $\tilde{\delta} = k\delta + \delta'$ For any choice of δ' . Subsampling amplification #### Theorem. Subsampling Amplification Composing an (ε, δ) -DP A with a sampling rate of q results in an $(\tilde{\varepsilon}, \tilde{\delta})$ -DP algorithm where $$\tilde{\varepsilon} = \log(1 - q + qe^{\varepsilon}) = O(q\varepsilon)$$ and $\tilde{\delta} = q\delta$ Private SGD with clipping L1 norm: • $$\theta_t = \theta_{t-1} - \gamma \text{Clip}_{\tau} \left(\nabla_{\theta} \mathcal{E}(f(x_t; \theta), y_t) \right) + Lap(2\tau/\varepsilon)$$ - With q=1/n, k rounds satisfies $(O(\varepsilon/n\sqrt{k\ln(1/\delta)}),\delta)$ -DP for any $\delta>0$. - Can also clip L2 norm and use Gaussian mechanism. - Q: what did you observe empirically L1 vs. L2? #### Poisson subsampling disadvantages $$\bullet \ \theta_t = \theta_{t-1} - \gamma \left(\left[\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathrm{Clip}_\tau \left(\nabla_\theta \mathcal{E}(f(x_t;\theta), y_i) \right) \right] + \mathcal{N}(0, \tau^2 \rho^2) \right)$$ • I cannot set $\rho \propto |\mathcal{B}|^{-1}$ - mechanism cannot be data-dependent. It should work for the worst case i.e. when $|\mathcal{B}| = 1$. ## **Agenda for today**Analyzing privacy of ML training - Improving composition - Gaussian DP - Privacy Auditing - HW1 solutions ### Better composition ### Approximate DP analysis is loose - After k steps of DP-SGD, we had $O(\varepsilon\sqrt{2k\ln(1/\delta)} + k\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}, \delta)$ - The extra k seems unnecessary advanced composition is too lose. #### **Proof sketch** Privacy random variable of composition: $$R = \sum_{i=1}^{k} \log \left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]} \right) = \sum_{i=1}^{k} R_i$$ - If $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent, we get $O(\varepsilon \sqrt{k})$ - With bias, we get $O(\varepsilon \sqrt{k} + E[R] \cdot k)$ #### **Proof sketch** Privacy random variable of composition: $$R = \sum_{i=1}^{k} \log \left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]} \right) = \sum_{i=1}^{k} R_i$$ - What is the bias i.e. $E[R_i] = ?$ - $E_t[\mathcal{L}] = E_{t \sim y}[\log(P[y = t]/P[y' = t])] = \text{KL}(y||y')$ - where y = A(D) and y' = A(D') - Let's compute it #### **Proof sketch** - Worst-case: $D_{\mathrm{KL}}(yy') \leq \varepsilon(e^{\varepsilon}-1)$ - KL-divergence between two Laplace distributions with different means • $$D_{\text{KL}}\left(\text{Laplace}(\mu_1, b) \mid \text{Laplace}(\mu_2, b)\right) = \frac{|\mu_1 - \mu_2|}{b} + e^{-|\mu_1 - \mu_2|/b} - 1.$$ - $= \varepsilon + e^{-\varepsilon} 1 \approx O(\varepsilon)$ - After k rounds, $O(\varepsilon\sqrt{k} + \varepsilon k) = O(\varepsilon k)$. Need to set $\varepsilon = 1/k$. #### **Proof sketch** KL-divergence between two Gaussian distributions with different means • $$D_{\text{KL}}(\mathcal{N}(\mu_1, \sigma^2) || \mathcal{N}(\mu_2, \sigma^2)) = \frac{(\mu_1 - \mu_2)^2}{2\sigma^2}$$. $$\bullet = O(\varepsilon^2) \quad \text{since recall } \sigma = \frac{\Delta_2 \sqrt{2 \ln(1.25/\delta)}}{\varepsilon}$$ • After k rounds, $O(\varepsilon\sqrt{k} + \varepsilon^2 k)$. Sufficient to set $\varepsilon = 1/\sqrt{k}!$ Geometric intuition for gaussians ### Gaussian Differential Privacy ### f-DP #### Most general privacy definition • **Definition.** Given a function f, we say an algorithm is f-DP if the tradeoff curve of an optimal distinguisher is strictly above f. ### f-DP #### Generalization (ε, δ) -DP • **Prop 2.5** [WZ10]. A is (ε, δ) -DP iff it satisfies $f_{\varepsilon, \delta}$ -DP for $f_{\varepsilon, \delta} = \max(1 - \delta - e^{\varepsilon}x \;,\; (1 - \delta - x)/e^{\varepsilon})$ • **Prop 2.12** [DRS19] A is f-DP iff it satisfies $(\varepsilon, \delta_f(\varepsilon))$ -DP for $\forall \varepsilon \geq 0$ and $\delta_f(\varepsilon) = 1 + f^*(-e^{\varepsilon})$. ### Gaussian-DP - **Definition.** A is $\mu\text{-GDP}$ if it satisfies $f_{\mu}\text{-DP}$ for $f_{\mu}=T\left(\mathcal{N}(0,\!1)\;,\;\mathcal{N}(\mu,\!1)\right)$ • $$\frac{Pr[A(D) = t]}{Pr[A(D') = t]} \le \frac{Pr[\mathcal{N}(0,1) = t]}{Pr[\mathcal{N}(\mu,1) = t]} = \exp\left(\frac{1}{2}(\mu^2 - 2\mu t)\right)$$ • $$\alpha(\tau) = 1 - \Phi(\tau)$$ and $\beta(\tau) = \Phi(\tau - \mu)$ ### Gaussian-DP #### Gaussian mechanism - **Definition.** A is μ -GDP if it satisfies f_μ -DP for $f_\mu = T\left(\mathcal{N}(0,1)\;,\;\mathcal{N}(\mu,1)\right)$ #### Theorem. Gaussian mechanism Given $f:\mathcal{X}^n\to\mathbb{R}^d$ with Δ bounded \mathscr{C}_2 -sensitivity, $f(D)+\mathcal{N}\left(0\;,\;\frac{\Delta^2}{\mu^2}I_d\right)$ is $\mu\text{-GDP}.$ ## Gaussian Differential Privacy Tight composition #### Theorem. GDP Composition Composition of $$A_1 \circ A_2 \ldots \circ A_k$$, each of which is μ_i -GDP is $\sqrt{\sum_{i=1}^k \mu_i^2}$ -GDP. ### Gaussian Differential Privacy #### **Canonical f** Theorem 3.4 [DRS19] Central limit theorem of composition Given some regularity assumptions, composition of $A_1 \circ A_2 \dots \circ A_k$, each of which is f_i -DP is approximately μ -GDP for $$\mu = \frac{2\sqrt{k}\kappa_1}{\kappa_1 - \kappa_2} \text{ for } \kappa_1 = -\int_0^1 \log|f'(x)| \, dx \text{ and } \kappa_2 = -\int_0^1 \log^2|f'(x)| \, dx.$$ ### Gaussian Differential Privacy #### **Canonical f** In stats, combining may random variables ≈ Gaussian by CLT. In DP, composing many DP steps ≈gDP. • Caution: just like CLT sometimes fails, Thm 3.4 is sometimes fails and underestimates privacy [GLW21]. ### Gaussian Differential Privacy #### Amplification by subsampling - Define $f_q(x) = qf(x) + (1-q)(1-x)$ and f_q^{-1} - Theorem 4.2 [DRS19] Composing q-sampling with f-DP, is $\min(f_p,f_p^{-1})$ **-DP - Unfortunately, no closed form for GDP, compute numerically. ### Private SGD #### **Using Gaussian-DP** Corollary 5.4 [DRS19] Subsampled Composition Suppose each A_i is μ -GDP. Then, composing q-sampled A_i is asymptotically $$(q\sqrt{k}\sqrt{e^{\mu^2}}\Phi(3\mu/2) + 3\Phi(-\mu/2) - 2)$$ -GDP. Tightest privacy bound [B+'20]. But, only asymptotically valid. ### Aside: Communicating Privacy #### **Odds** ratio #### If you do not participate, 39 out of 100 potential reports will lead your manager to believe you responded NO. #### If you participate, 61 out of 100 potential reports will lead your manager to believe you responded NO. #### If you participate, 61 out of 100 potential reports will lead your manager to (a) ODDS-TEXT (b) ODDS-VIS - How do you communicate privacy risk to your friends? - Excellent study: [N+UseNIX'23] - Using odds ratio leads to increased understanding of risks and willingness to share data. - How to explain ε -DP and μ -GDP? Need to incorporate prior knowledge of attacker. ### Drawbacks of pure theory - Bounds always loose - people assume this and train models with high theoretical arepsilon - Maybe my implementation is incorrect - Why should I trust your claim? #### **Backpropagation Clipping for Deep Learning with Differential Privacy** Timothy Stevens* Ivoline C. Ngong* David Darais Calvin Hirsch University of Vermont University of Vermont Galois, Inc. Two Six Technologies David Slater Joseph P. Near Two Six Technologies University of Vermont - In 2022, proposed to integrate clipping into forward/backward pass directly - SOTA accuracy with 30x smaller ε #### Debugging Differential Privacy: A Case Study for Privacy Auditing Florian Tramèr, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, Nicholas Carlini Google Research - Consider the following test: - D = MNIST dataset: 60k images - D' = Add (x', y'). - Train a CNN θ using [S+22] to get 0.98 acc and (0.21, 10–5)-DP. - Check $\ell_{\theta}(x', y') \leq \tau$. If D' will be smaller. - Some decisions to make - Which (x', y')? Called canary - insert an unique image which model is likely to memorize. i.e. insert a backdoor attack - Try a few images (~25) on an initial 2k training runs. - chose to insert a "checkerboard" pattern in x and incorrect label as y - What makes a good canary? - Memorable to the model - "data poisoning" or "backdoor insertion" attacks make for great canaries - Some decisions to make - Measure loss on canary $\ell_{\theta}(x', y')$ - Repeat 100k on D and 100k on D'. - Classify as D' if $\ell_{\theta}(x', y') \leq \tau$ - Which τ ? Pick best using validation training runs. - Claimed privacy: (0.21, 10–5)-DP. - With a threshold $\tau = 2.64$, attack had true positive rate of 4.922% and false positive rate of 0.174%. - Is this possible? - We have claimed $\beta = 0.00174$ and $\alpha = 1-4.922/100 = 0.95078$. - We have claimed privacy of (0.21, 10–5)-DP. - $\beta \ge \max(1 10^{-5} e^{0.21}0.95078, (1 10^{-5} 0.95078)/(e^{0.21})$ = 0.0398885074 - Can be due to sampling? - Define $X=1\{ \text{predicted } D \mid \text{was } D' \}$ on a training run. - False positive rate $\alpha = E[X]$ i.e. $X \sim \text{Ber}(\alpha)$ - We have 100k iid samples $X_1, ..., X_{100k} \sim \mathrm{Ber}(\alpha)$ - How far can empirical $\hat{\alpha}$ and true α be? ### Aside: Clopper-Pearson "exact" method - $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Bern}(\alpha)$. α is unknown. - Given Y for n observations, what can we say about α ? - Clopper-Pearson gives intervals $\alpha \in [\alpha^-, \alpha^+]$ with probability $\geq 1-p$ - No closed form need to compute numerically. - We have claimed $\beta = 0.00174$ and $\alpha = 1-4.922/100 = 0.95078$. - We have claimed privacy of (0.21, 10–5)-DP. - $\beta \ge \max(1 10^{-5} e^{0.21}0.95078, (1 10^{-5} 0.95078)/(e^{0.21})$ = 0.03988885074 - By Clopper-Pearson, $\alpha^+ \le 0.95509$, $\beta^- \ge 0.00274$ with $p = 10^{-10}$ - Later, they found a bug and retracted the paper. Very common in DP!! ### Improvements: better stats - Do we really need α^+, β^- ? - . Directly bound $\log(\frac{1-\delta-\beta}{\alpha})$ using Log-Katz confidence intervals. - Incorporate priors [ZB+23]: - Use Bayesian approach - Compute joint posterior of $\alpha, \beta, \varepsilon$ - Your favorite stats trick ### Improvements: picking canaries - Picking the right (x', y') is an art - Very similar to backdoor attacks - Goal is to test for conditional memorization - Means searching for a "planted signal" - when detected, we are sure. i.e. low type I - but can miss a lot i.e. high type II - what if $\delta \geq \alpha$? ### Gaussian Membership Inference More improvements - Test for GDP instead: - Suppose some Gaussian mechanism claims (ε, δ) -DP - Calculate corresponding μ -GDP - Check if empirical α , β allows such μ $\mu^- = \Phi^{-1}(1-\alpha^+) \Phi^{-1}(\beta^-)$ - Reduces number of runs by 10,000x [N+23] (d) $$\varepsilon = 6$$