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Course Organization

I Lectures: Mon 4-5:30pm

I Exercises: Wed 4-5:30pm

I Project

Grading: Written final exam, closed book (50%). Project presentation and report (40%).
Participation and discussions (10%).
TA: Amin Banayeeanzade (banayeea@usc.edu).
O�ce hours: Mon 10-11 & Thu 11-12. Room TBD.

See details on course webpage: spkreddy.org/optmlspring2025.
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Outline

I Convexity, Gradient Methods, Proximal algorithms, Subgradient Methods,
Stochastic Gradient Descent, Non-Convex Optimization, Accelerated
Methods, Second-Order Methods, Adaptive Optimization, Variational Inequalities.

I Advanced Contents:
I Feature Learning in Neural Networks

I LLM training - memory e�cient methods and Zeroth order DPO.

I Large-Scale and Distributed Training
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Optimization

I General optimization problem (unconstrained minimization)

minimize f(x)

with x 2 Rd

I candidate solutions, variables, parameters x 2 Rd

I objective function f : Rd ! R

I typically: technical assumption: f is continuous and di↵erentiable
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Why? And How?

Optimization is everywhere

machine learning, big data, statistics, data analysis of all kinds, finance, logistics, planning,

control theory, mathematics, search engines, simulations, and many other applications ...

I Mathematical Modeling:
I defining & modeling the optimization problem

I Computational Optimization:
I running an (appropriate) optimization algorithm
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Optimization for Machine Learning

I Mathematical Modeling:
I defining & and measuring the machine learning model

I Computational Optimization:
I learning the model parameters

I Theory vs. practice:
I libraries are available, algorithms treated as “black box” by most practitioners
I Not here: we look inside the algorithms and try to understand why and how fast

they work!
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Optimization Algorithms

I Optimization at large scale: simplicity rules!

I Main approaches:
I Gradient Descent

I Stochastic Gradient Descent (SGD)

I Coordinate Descent

I History:
I 1847: Cauchy proposes gradient descent

I 1950s: Linear Programs, soon followed by non-linear, SGD

I 1980s: General optimization, convergence theory

I 2005-2015: Large scale optimization (mostly convex), convergence of SGD

I 2015-today: Improved understanding of SGD for deep learning
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Example: Coordinate Descent

Goal: Find x? 2 Rd minimizing f(x). (Example: d = 2)

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.
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Chapter 1

Theory of Convex Functions
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Warmup: The Cauchy-Schwarz inequality

Let u,v 2 Rd. Cauchy-Schwarz inequality (Proof in Section ??):

|u>v|  kuk kvk .

Notation:

u =

0

BBB@

u1

u2
...

ud

1

CCCA

u> =
�

u1 u2 · · · ud

�

I u = (u1, . . . , ud),v = (v1, . . . , vd), d-dimensional
column vectors with real entries

I u>, transpose of u, a d-dimensional row vector

I u>v =
Pd

i=1 uivi, scalar (or inner) product of u
and v

I |u>v|, absolute value of u>v

I kuk =
p
u>u =

qPd
i=1 u

2
i , Euclidean norm of u
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The Cauchy-Schwarz inequality: Interpretation
Let u,v 2 Rd. Cauchy-Schwarz inequality: |u>v|  kuk kvk.

For nonzero vectors, this is equivalent to

�1  u>v

kuk kvk  1.

Fraction can be used to define the angle ↵ between u and v: cos(↵) = u>v
kukkvk

v

u
↵

u>v < 0

1v

u↵
u>v > 0

1

Examples for unit vectors
(kuk = kvk = 1)

v = u
u>v = 1

v = �u ↵ = ⇡
u>v = �1

Equality in Cauchy-Schwarz if and only
if u = v or u = �v.
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Convex Sets
A set C is convex if the line segment between any two points of C lies in C, i.e., if for
any x,y 2 C and any � with 0  �  1, we have

�x+ (1� �)y 2 C.

24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R
2. Left. The convex hull of a

set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form ✓1x1 + · · · + ✓kxk, where ✓1 + · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted convC, is the set of all convex combinations
of points in C:

convC = {✓1x1 + · · ·+ ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓1 + · · ·+ ✓k = 1}.

As the name suggests, the convex hull convC is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then convC ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓1, ✓2, . . .

*Figure 2.2 from S. Boyd, L. Vandenberghe

Left Convex.

Middle Not convex, since line segment not in set.

Right Not convex, since some, but not all boundary points are contained in the
set.
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Properties of Convex Sets

I Intersections of convex sets are convex

Observation 1.2. Let Ci, i 2 I be convex sets, where I is a (possibly infinite)
index set. Then C =

T
i2I Ci is a convex set.

I (later) Projections onto convex sets are unique,
and often e�cient to compute

PC(x0) := argminy2C
ky � x0k
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Convex Functions
Definition
A function f : Rd ! R is convex if (i) dom(f) is a convex set and (ii) for all
x,y 2 dom(f), and � with 0  �  1, we have

f(�x+ (1� �)y)  �f(x) + (1� �)f(y).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1� ✓)y)  ✓f(x) + (1� ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y

and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

*Figure 3.1 from S. Boyd, L. Vandenberghe

Geometrically: The line segment between (x, f(x)) and (y, f(y)) lies above the
graph of f .
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Motivation: Convex Optimization

Convex Optimization Problems are of the form

min f(x) s.t. x 2 X

where both

I f is a convex function

I X ✓ dom(f) is a convex set (note: Rd is convex)

Crucial Property of Convex Optimization Problems

I Every local minimum is a global minimum, see later...
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Motivation: Solving Convex Optimization - Provably

For convex optimization problems, all algorithms

I Coordinate Descent, Gradient Descent, Stochastic Gradient Descent, Projected
and Proximal Gradient Descent

do converge to the global optimum! (assuming f di↵erentiable)

Example Theorem: The convergence rate is proportional to 1
t , i.e.

f(xt)� f(x?)  c

t

(where x? is some optimal solution to the problem.)

Meaning: Approximation error converges to 0 over time.
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Motivation: Convergence Theory

1.6. Overview of the results and disclaimer 243

f Algorithm Rate # Iter Cost/iter

non-smooth center of
gravity exp

�
� t
n

�
n log

� 1
�

� 1 �,
1 n-dim

�

non-smooth ellipsoid
method

R
r exp

�
� t
n2

�
n2 log

�
R
r�

� 1 �,
mat-vec �

non-smooth Vaidya Rn
r exp

�
� t
n

�
n log

�
Rn
r�

� 1 �,
mat-mat �

quadratic CG
exact

exp
�
� t

�

� n
� log

� 1
�

� 1 �

non-smooth,
Lipschitz PGD RL/

�
t R2L2/�2

1 �,
1 proj.

smooth PGD �R2/t �R2/�
1 �,

1 proj.

smooth AGD �R2/t2 R
�
�/� 1 �

smooth
(any norm) FW �R2/t �R2/� 1 �,

1 LP
strong.
conv.,

Lipschitz
PGD L2/(�t) L2/(��) 1 � ,

1 proj.
strong.
conv.,
smooth

PGD R2 exp
�
� t

�

�
� log

�
R2
�

� 1 � ,
1 proj.

strong.
conv.,
smooth

AGD R2 exp
�
� t�

�

� �
� log

�
R2
�

�
1 �

f + g,
f smooth,
g simple

FISTA �R2/t2 R
�
�/�

1 � of f
Prox of g

max
y�Y

�(x, y),
� smooth

SP-MP �R2/t �R2/�
MD on X
MD on Y

linear,
X with F
�-self-conc.

IPM � exp
�
� t�

�

� �
� log

�
�
�

� Newton
step on F

non-smooth SGD BL/
�
t B2L2/�2

1 stoch. �,
1 proj.

non-smooth,
strong. conv. SGD B2/(�t) B2/(��) 1 stoch. �,

1 proj.
f = 1

m

�
fi

fi smooth
strong. conv.

SVRG – (m+ �) log
� 1
�

�
1 stoch. �

Table 1.1: Summary of the results proved in Chapter 2 to Chapter 5 and some of
the results in Chapter 6.

(Bubeck [?])

USC Optimization for Machine Learning CSCI-599 19/39



Convex Functions & Sets

The graph of a function f : Rd ! R is defined as

{(x, f(x)) |x 2 dom(f)},

The epigraph of a function f : Rd ! R is defined as

epi(f) := {(x, ↵) 2 Rd+1 |x 2 dom(f), ↵ � f(x)},

Observation 1.4. A function is convex i↵ its epigraph is a convex set.
epi(f)

x

f(x)

graph of f
epi(f)

f(x)

x
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Convex Functions & Sets

Proof: recall epi(f) := {(x, ↵) 2 Rd+1 |x 2 dom(f), ↵ � f(x)}
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Convex Functions

Examples of convex functions

I Linear functions: f(x) = a>x

I A�ne functions: f(x) = a>x+ b

I Exponential: f(x) = e
↵x

I Norms. Every norm on Rd is convex.

Convexity of a norm kxk

By the triangle inequality kx+ yk  kxk+ kyk and homogeneity of a norm
kaxk = |a| kxk , a scalar:

k�x+ (1� �)yk  k�xk+ k(1� �)yk = � kxk+ (1� �) kyk .

We used the triangle inequality for the inequality and homogeneity for the equality.
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Jensen’s Inequality

Lemma (Jensen’s inequality)

Let f be convex, x1, . . . ,xm 2 dom(f), �1, . . . , �m 2 R+ such that
Pm

i=1 �i = 1.
Then

f

 
mX

i=1

�ixi

!


mX

i=1

�if(xi).

For m = 2, this is convexity. The proof of the general case is Exercise ??.
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Convex Functions are Continuous

Lemma 1.6.: Let f be convex and suppose that dom(f) is open. Then f is
continuous.

Not entirely obvious (Exercise ??).
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Di↵erentiable Functions

Graph of the a�ne function f(x) +rf(x)>(y � x) is a tangent hyperplane to the
graph of f at (x, f(x)).

x

f(y)

f(x) +rf(x)>(y � x)

y
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First-order Characterization of Convexity

Lemma ([?, 3.1.3])
Suppose that dom(f) is open and that f is di↵erentiable; in particular, the gradient
(vector of partial derivatives)

rf(x) :=

✓
@f

@x1
(x), . . . ,

@f

@xd
(x)

◆

exists at every point x 2 dom(f). Then f is convex if and only if dom(f) is convex
and

f(y) � f(x) +rf(x)>(y � x) (1)

holds for all x,y 2 dom(f).
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First-order Characterization of Convexity

f(y) � f(x) +rf(x)>(y � x), x,y 2 dom(f).

Graph of f is above all its tangent hyperplanes.

x y

f(y)

f(x) +rf(x)>(y � x)
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Nondi↵erentiable Functions. . .
are also relevant in practice.

x

f(x) = |x|

0

More generally, f(x) = kxk (Euclidean norm). For d = 2, graph is the ice cream cone:
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Second-order Characterization of Convexity
Lemma ([?, 3.1.4])
Suppose that dom(f) is open and that f is twice di↵erentiable; in particular, the
Hessian (matrix of second partial derivatives)

r2
f(x) =

0

BBBB@

@2f
@x1@x1

(x) @2f
@x1@x2

(x) · · · @2f
@x1@xd

(x)
@2f

@x2@x1
(x) @2f

@x2@x2
(x) · · · @2f

@x2@xd
(x)

...
... · · ·

...
@2f

@xd@x1
(x) @2f

@xd@x2
(x) · · · @2f

@xd@xd
(x)

1

CCCCA

exists at every point x 2 dom(f) and is symmetric. Then f is convex if and only if
dom(f) is convex, and for all x 2 dom(f), we have

r2
f(x) ⌫ 0 (i.e. r2

f(x) is positive semidefinite).

(A symmetric matrix M is positive semidefinite if x>Mx � 0 for all x, and positive definite if

x
>Mx > 0 for all x 6= 0.)
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Second-order Characterization of Convexity

Example: f(x1, x2) = x
2
1 + x

2
2.

r2
f(x) =

✓
2 0
0 2

◆
⌫ 0.
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Operations that Preserve Convexity

Lemma (Exercise ??)

(i) Let f1, f2, . . . , fm be convex functions, �1, �2, . . . , �m 2 R+. Then
f :=

Pm
i=1 �ifi is convex on dom(f) :=

Tm
i=1 dom(fi).

(ii) Let f be a convex function with dom(f) ✓ Rd, g : Rm ! Rd an a�ne function,
meaning that g(x) = Ax+ b, for some matrix A 2 Rd⇥m and some vector
b 2 Rd. Then the function f � g (that maps x to f(Ax+ b)) is convex on
dom(f � g) := {x 2 Rm : g(x) 2 dom(f)}.
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Local Minima are Global Minima

Definition
A local minimum of f : dom(f) ! R is a point x such that there exists " > 0 with

f(x)  f(y) 8y 2 dom(f) satisfying ky � xk < ".

Lemma
Let x? be a local minimum of a convex function f : dom(f) ! R. Then x? is a
global minimum, meaning that f(x?)  f(y) 8y 2 dom(f).

Proof.
Suppose there exists y 2 dom(f) such that f(y) < f(x?).
Define y0 := �x? + (1� �)y for � 2 (0, 1).
From convexity, we get that that f(y0) < f(x?). Choosing � so close to 1 that
ky0 � x?k < " yields a contradiction to x? being a local minimum.
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Critical Points are Global Minima

Lemma
Suppose that f is convex and di↵erentiable over an open domain dom(f). Let
x 2 dom(f). If rf(x) = 0 (critical point), then x is a global minimum.

Proof.
Suppose that rf(x) = 0. According to our Lemma on the first-order characterization
of convexity, we have

Geometrically, tangent hyperplane is horizontal at x.
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Strictly Convex Functions

Definition ([?, 3.1.1])
A function f : dom(f) ! R is strictly convex if (i) dom(f) is convex and (ii) for all
x 6= y 2 dom(f) and all � 2 (0, 1), we have

f(�x+ (1� �)y) < �f(x) + (1� �)f(y). (2)

convex, but not strictly convex strictly convex

Lemma
Let f : dom(f) ! R be strictly convex. Then f has at most one global minimum.
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Constrained Minimization

Definition
Let f : dom(f) ! R be convex and let X ✓ dom(f) be a convex set. A point x 2 X

is a minimizer of f over X if

f(x)  f(y) 8y 2 X.

Lemma
Suppose that f : dom(f) ! R is convex and di↵erentiable over an open domain
dom(f) ✓ Rd, and let X ✓ dom(f) be a convex set. Point x? 2 X is a minimizer of
f over X if and only if

rf(x?)>(x� x?) � 0 8x 2 X.
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Constrained Minimization

x?

rf(x?)

x

X

rf(x?)>(x� x?) � 0
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Existence of a minimizer
How do we know that a global minimum exists?

Not necessarily the case, even if f bounded from below (f(x) = e
x)

Definition
f : Rd ! R, ↵ 2 R. The set f

↵ := {x 2 Rd : f(x)  ↵} is the ↵-sublevel set of f

↵

f↵ f↵f↵
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The Weierstrass Theorem

Theorem
Let f : Rd ! R be a convex function, and suppose there is a nonempty and bounded
sublevel set f

↵. Then f has a global minimum.

Proof:

We know that f—as a continuous function—attains a minimum over the closed and
bounded (= compact) set f

↵ at some x?. This x? is also a global minimum as it has
value f(x?)  ↵, while any x /2 f

↵ has value f(x) > ↵ � f(x?).

Generalizes to suitable domains dom(f) 6= Rd.
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