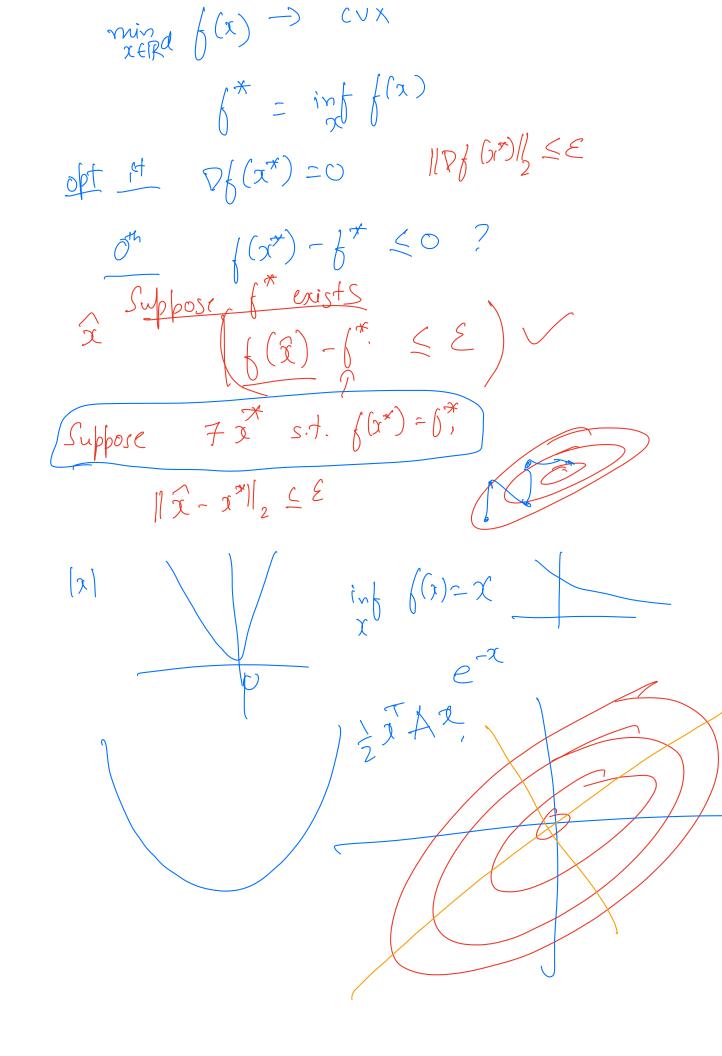
# Optimization for Machine Learning CSCI-599

Lecture 2: Gradient Descent

### Sai Praneeth Karimireddy

USC - https://spkreddy.org/optmlspring2025.html January 15, 2025



By Taylors Expansion "close enough" y >  $-\nabla \left( x \right)$ Q for  $f(y) \approx f(x) + \nabla f(x) (y-x)$  $y = x - y \mathcal{D}_{f}(x)$   $\int strp-size, learning sate$  $\|V_{2}\|_{2}^{2} = \frac{5}{1}V_{1}^{2}$ 11/All=maxli matur MAGN JUOLU Jeft-Smoothness  $2^{nd}$ el  $\left\| \nabla^2 f(\alpha) \right\|_2 \leq L \quad \forall \mathbf{X}$  $\| \nabla f(y) - \nabla f(x) \|_2 \leq L \quad \forall x, y$ 1 onder 11y-21/2 f(y) - (f(x) + y(x)(y-x))Forder Yx,y <2  $\frac{f(x) - f(x)}{(x - x)} - \frac{\nabla f(x)}{(x - x)} - \frac{\nabla f(x)}{(x - x)} - \frac{\nabla f(x)}{(x - x)}$ 

 $f(x) + \nabla f(x)'(y - x) + \frac{L}{2} |y - x|$ q(y)∀ ky₽  $P(x) \in L(y-a)$ 1Pq(y)=  $\nabla g(\dot{g})$ <u>\_\_\_</u> L-smooth =)  $Pg(x) = V_f(x)$ zi z CVX  $\left( \int (x) + \frac{\gamma}{2} (x) \int (y - x) \right) \leq \frac{1}{2} ||y - x||^2$ f (y) - $\sum_{i=1}^{n}$ <2/4-21 (2)  $||\nabla f(y) - \nabla f(x)||$ 8 2 (|y - x|)-\$ Minimizer of the never "overshorts" uppe Claim nevel "overshoots" V=- $= 2c - \frac{1}{r} \mathcal{D}f(x)$ 

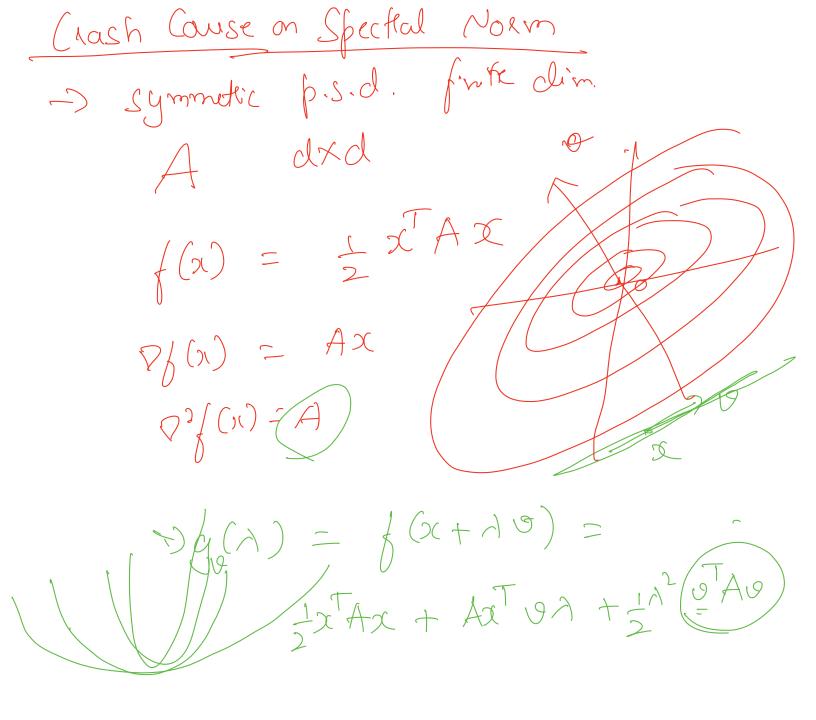
$$f(x) = \frac{1}{2}xAx - bx$$

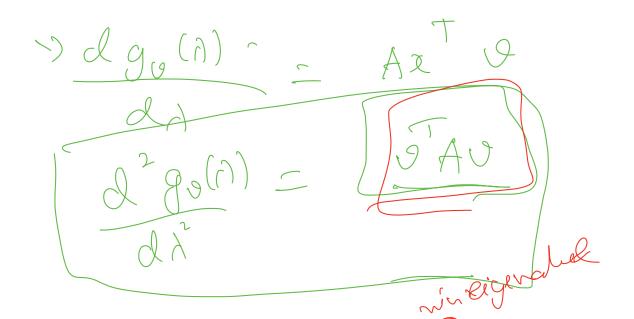
$$\frac{1}{2}xAx - bx$$

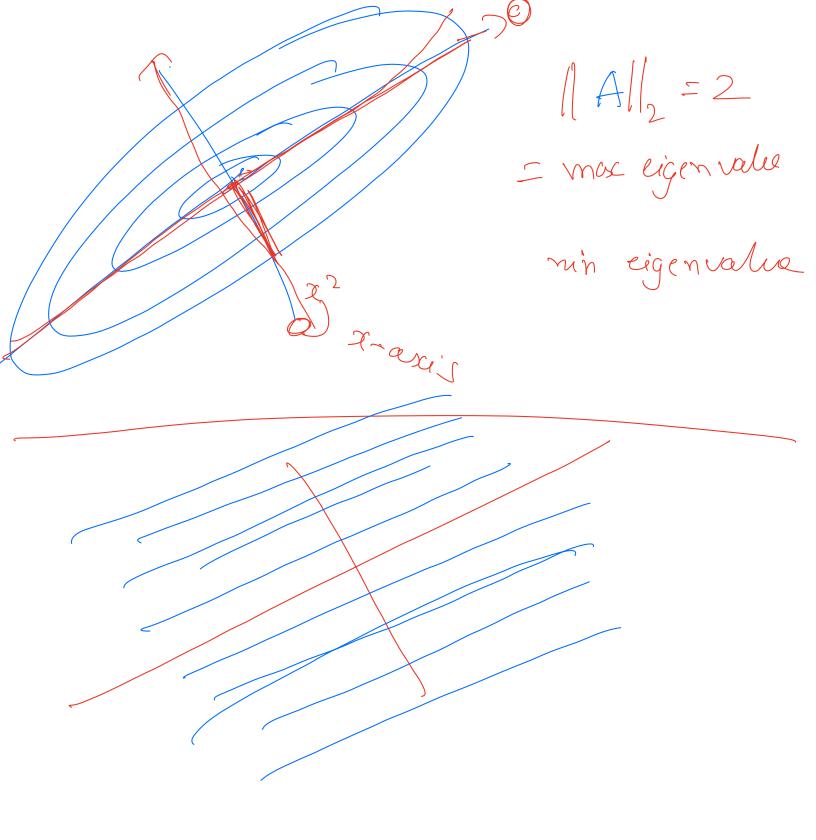
$$\frac{1}{2}xAx - b$$

$$\frac{1}{2}xAx -$$

Claim if f is cux and L-snoth  $\chi_{ff} = \chi_f - \frac{1}{L} \mathcal{D}(\mathcal{G}_f)$  $(T) \quad f(x_t) - f^* \leq O\left(\frac{1'}{t}\right)$ 2) ht strongly-cvx =>  $f(x_{+}) - f^{*} \leq O(c)(-n)$ 







Jan 27 CVX function & is L-smooth if A  $ll p_{all_2} \leq L \quad \forall x$  $\left( \begin{array}{c} 1 \\ 1 \end{array} \right)$ (ii)  $\|\nabla(\alpha) - \nabla(cy)\|_2 \leq L\|x-y\|_2 \quad \forall x, y$ (iii)  $f(y) \leq f(x) + g(x)(y-x) + \frac{1}{2} ||y-x||^2$  $\begin{bmatrix} \chi \\ \pm \eta \end{bmatrix} = \begin{bmatrix} \chi \\ \pm \eta \end{bmatrix} = \begin{bmatrix} \chi \\ \pm \eta \end{bmatrix} = \begin{bmatrix} \chi \\ \pm \eta \end{bmatrix}$ >Thm Claim f(Seri) - fx < some decreasing function of t  $f(x) = \frac{1}{2} \overline{x} (\overline{A} \overline{A}) x - \overline{b} x$ A'A is symm, pd  $\Rightarrow x^* = (A^T A)^{-1} b$  $\Sigma_{\pm 1} = \Sigma_{\pm} - \gamma \left( \widehat{A} - \frac{1}{4} - \frac{1}{5} \right)$  $\therefore \nabla / (a) = (A^T A) a - b$  $\operatorname{cut} i^{\dagger} V_{h}(i^{\ast}) = O$ 

Observation 1  $\int (x) - \int^* = \left( \frac{1}{2} \|A(x - x^*)\|^2 \right) = AA(x - x^*)$  = AAx - AA= AAX - AA(AA)b  $= A^{T}Ax - b$  $\|x_{t+1} - x^{*}\|_{2}^{2} = \|x_{t} - x(AAx_{t} - b) - x^{*}\|_{2}^{2}$  $= ||x_{+} - x^{+}||^{2} + 2x(AA_{+} - b)(x_{+} - b))$ Attempt 1 + J || AA 2, - b ||<sup>2</sup> 2 -2s(ATAX,-b)'(x,-(AA)b) $-27(\overline{A}A_{4}, 6)$  ( $\overline{A}A_{4}(A)$  ( $A = (\overline{A}A^{-1}b)$  $-27\left(\overline{A}^{-}+\overline{A}^{+}\right)\left((\overline{A}^{-}+\overline{A})\right)\left((\overline{A}^{-}+\overline{A}^{+}-\overline{A})\right)>0$ < -200min II AAX, - b112 P.D.M. M.S. Amin II

 $(M - A_{mim}I) > O$  $\|\chi_{t+1} - \chi^{*}\|^{2} \leq \|\chi_{t} - \chi^{*}\|^{2}$  $\frac{1}{t} = \frac{27 n_{min}}{14 A J_{4}} - 611^{2}$  $\frac{1}{4^{2}} = \frac{1}{4^{2}} \frac{$ Attempt 2 -28  $(A^TA)_4-b)(A^TA)_4-b)$  $= A(x_{+}(\overline{A}\overline{A})^{'}b)(\overline{A}\overline{A}^{'}) A(x_{+}(\overline{A}\overline{A})^{'}b)$ 

Strong Conversity  $- \mathcal{O}_{\mathcal{F}}^{2}(\mathcal{G}) \geq 0$ - CVX - strict cur - 0%(x) > 0~ restaggly cux uzo -  $p^2f(x) \ge wI$  $-\left(\frac{2}{\sqrt{2}}\left(y\right)-\sqrt{2}\left(x\right), y-x\right) \ge \frac{2}{\sqrt{2}}\left(x\right)^{2}$ => 11P(G) - D((x)11 2 mlly-xll  $\frac{1}{2}\left(\frac{1}{2}\right) - \left[\int(x) + \nabla(x)\left(\frac{1}{2}-x\right)\right] \geq \frac{1}{2}\left|\frac{1}{2}-x\right|^{2}$ bis L-Smooth & u-strongly cut y= 2-1 0 (1)  $\overline{P} = \overline{P} (x) + \overline{P} (w (G-x) + \frac{1}{2} N y - 2N^2)$  $\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$ Q) => L Z M 21 110 f(a) 11th  $(\nabla f(x)))$ 

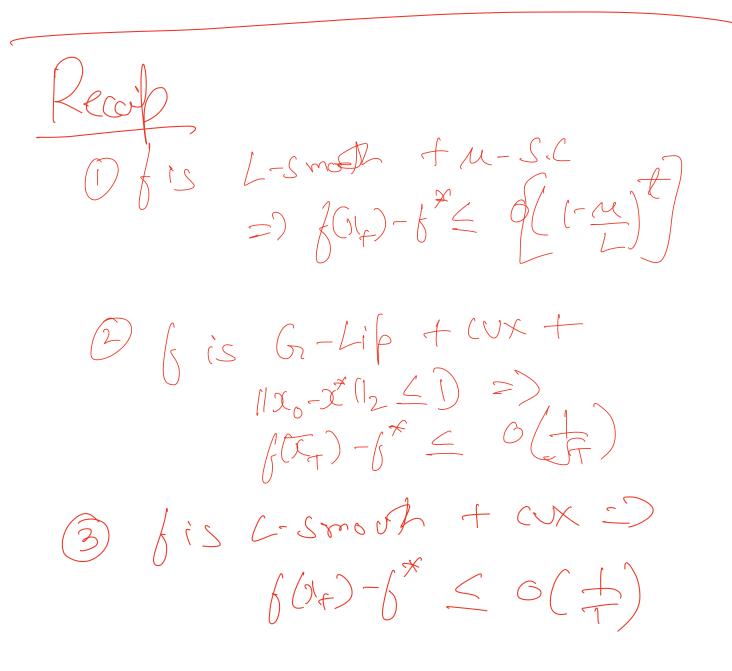
Claim  $\int (x_{+1}) \leq \int (x_{+1}) - Q$ b)  $f(x) - f(x_{+}) \leq -(Q2)$  $= \int (x_{f}) - \frac{1}{2} \left( \frac{1}{2\pi e} \frac{10}{10} \int (x_{+}) \frac{1}{2} \right)$  $\leq f(x_{+}) - \frac{1}{2} \left( f(x_{+}) - f^{*} \right)$  $\begin{pmatrix} f(\mathcal{I}_{++1}) - f^{\times} \end{pmatrix} \leq \begin{pmatrix} I - \mathcal{I}_{+} \end{pmatrix} f(\mathcal{I}_{+} - f^{\times})$  $\leq (1 - ne)^{t} f(x - f^{\star})$  $(a) = \pm \chi^T A \chi O D^2 f(\Lambda) = A$ Viz L

f is non-smooth, but cux  $\|x_{t+1} - x^{*}\|^{2} = \|x_{t} - xg_{t} - x^{*}\|^{2}$  $\mathcal{I}_{t+1} = \mathcal{I}_t - \mathcal{V} \underbrace{\mathcal{P}_f(\mathcal{I}_f)}_{\cdots}$  $= 112(-x^2/l^2)$  $-28g_{t}(x-x^{*}) \geq 0$  $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$ Claim  $f(y) \ge f(x_t) + \Im(x_t)(y - x_t)$ () lodg M=xt + 2 [17, (x=)/12

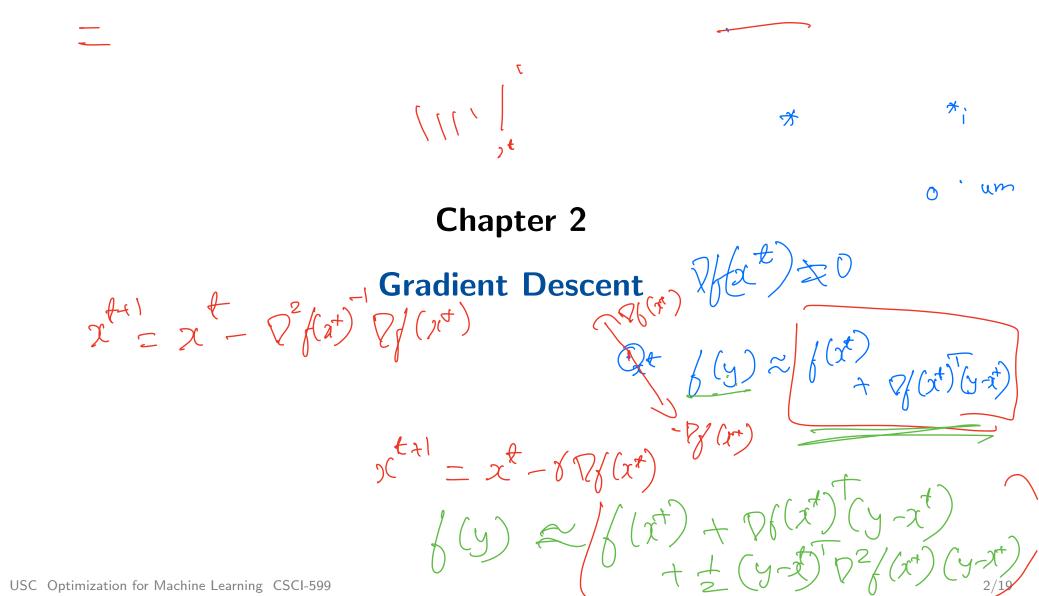
 $\frac{1}{7} \lesssim 23 \left( f(x_{f}) - f^{*} \right) \lesssim \frac{1}{24} \left( 1_{2} - x^{*} f(^{2} - 1/x_{e_{1}} - 3f^{2}) \right)$ H8G2)  $= \frac{1}{2} \left( \| \chi_{0} - \chi^{*} \|^{2} - \| \chi_{t_{t_{1}}} - \chi^{*} \|^{2} \right)$  $+ T \delta^2 G^2$  $\gamma = \int \frac{D^2}{T G^2} \leq \frac{D^2}{5} \frac{105 \cdot x^3 G^2}{5} = 2DAF$  $\frac{2}{T} \lesssim \int (G_{f}) - \int^{*} \leq \frac{2 D_{G} \int f}{T} = \frac{2 D_{G}}{\int f}$  $\overline{\mathcal{I}}_{+} = + \underbrace{\mathcal{I}}_{t} = \underbrace{\mathcal{I}}_{t}$  $f(\mathcal{X}_{+}) - b^{*} \leq \frac{1}{T} \leq f(\mathcal{X}_{+}) - b^{*} \leq \frac{\mathcal{Y}_{+}}{\mathcal{F}}$  $\|(\chi_{o} - \chi^{*})\|^{2} \leq D$ Assimpt'a  $\left\|\nabla_{f}\left(x_{+}\right)\right\|^{2} \leq C^{2}$ 

HI  $110/G 21/2 \leq C$  $|f(y) - f(a)| \leq C ||y - a||_2$ 

G-Lip



HH K



# The Algorithm

The Algorithm  $f(y) = f(x^{+}) + f'(y^{-}) + f'(y^{-$ (Assumptions:  $f : \mathbb{R}^d \to \mathbb{R}$  convex, differentiable, has a global minimum  $\mathbf{x}^*$ )

**Goal:** Find  $\mathbf{x} \in \mathbb{R}^d$  such that

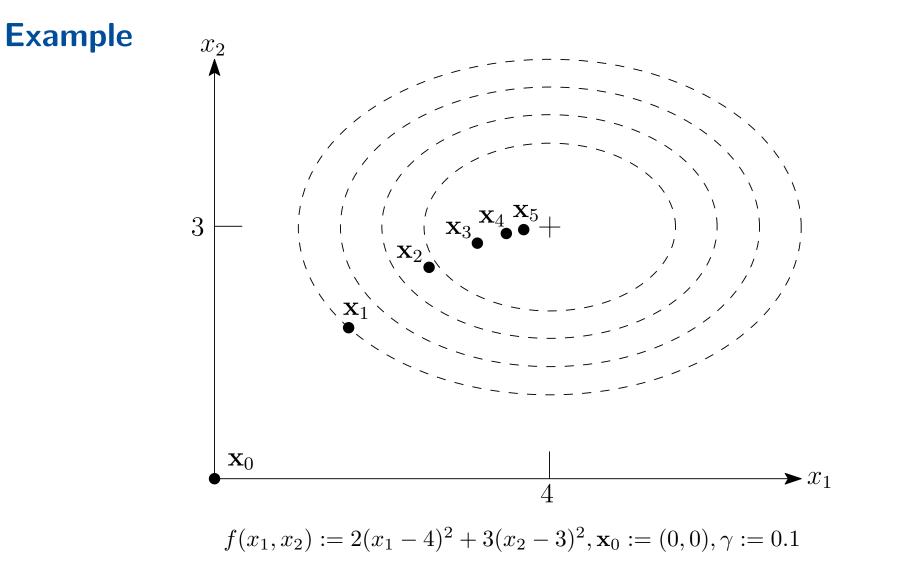
$$f(\mathbf{x}) - f(\mathbf{x}^{\star}) \le \varepsilon.$$

Note that there can be several global minima  $\mathbf{x}_1^* \neq \mathbf{x}_2^*$  with  $f(\mathbf{x}_1^*) = f(\mathbf{x}_2^*)$ .

**Iterative Algorithm:** choose  $\mathbf{x}_0 \in \mathbb{R}^d$ .

 $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$ 

for timesteps  $t = 0, 1, \ldots$ , and stepsize  $\gamma \ge 0$ .





• Abbreviate  $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$  (gradient descent:  $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$ ).

 $\mathbf{g}_t^{ op}(\mathbf{x}_t - \mathbf{x}^{\star}) =$  $\frac{1}{28} \cdot \frac{112}{124} - \frac{112}{12} = \frac{1}{20} \left[ \frac{1}{124} - \frac{1}{12} - \frac{1}{28} - \frac{1}{124} + \frac{1}{12} - \frac{1}{128} - \frac{1}{$ 

How to bound  $f(\mathbf{x}_t) - f(\mathbf{x}^{\star})$  ?

• Abbreviate  $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$  (gradient descent:  $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$ ).

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).$$

• Apply 
$$2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v}-\mathbf{w}\|^2$$
 to rewrite

$$\mathbf{g}_t^{ op}(\mathbf{x}_t \!-\! \mathbf{x}^{\star}) \;=\;$$

How to bound  $f(\mathbf{x}_t) - f(\mathbf{x}^{\star})$  ?

• Abbreviate  $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$  (gradient descent:  $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$ ).

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).$$

 $g_{t} = \mathcal{D}\left(2_{t}\right)$ 

Apply 
$$2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$$
 to rewrite  

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left( \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

$$= \frac{\gamma}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left( \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$
Sum this up over the first  $T$  iterations:  

$$\begin{bmatrix} \chi \\ \tau \end{bmatrix} = \begin{bmatrix} \chi \\ \tau$$

How to bound  $f(\mathbf{x}_t) - f(\mathbf{x}^{\star})$  ?

• Abbreviate  $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$  (gradient descent:  $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$ ).

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).$$

► Apply 
$$2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$$
 to rewrite  
 $\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left( \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$   
 $= \frac{\gamma}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left( \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$ 

Sum this up over the first T iterations:

$$\sum_{t=0}^{T-1} \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left( \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_T - \mathbf{x}^{\star}\|^2 \right)$$

Use first-order characterization of convexity:  $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y}$ 

• with 
$$\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$$
:

Use first-order characterization of convexity:  $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y}$ 

$$\blacktriangleright$$
 with  $\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$ :

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})$$

giving

$$\sum_{t=0}^{T-1} \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le$$

Use first-order characterization of convexity:  $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y}$ 

with 
$$\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$$
:  

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$$
giving
$$\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\mathbf{g}_t||^2 + \frac{1}{2\gamma} ||\mathbf{x}_0 - \mathbf{x}^*||^2,$$
an upper bound for the average error  $f(\mathbf{x}_t) - \overline{f}(\mathbf{x}^*)$  over the steps

last iterate is not necessarily the best one  $\int \frac{R}{B\sqrt{T}} = \frac{R}{T} = \frac{2}{3} \left( \frac{R}{B\sqrt{T}} + \frac{R^2}{2} \right) \left( \frac{R}{BR} + \frac{R^2}{2} \right) \left( \frac{R}{2$ 

stepsize is crucial

# Lipschitz convex functions: $O(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm.

- ► Equivalent to *f* being Lipschitz (Theorem **??**; Exercise **??**).
- ▶ Rules out many interesting functions (for example, the "supermodel"  $f(x) = x^2$ )

Theorem

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be convex and differentiable with a global minimum  $\mathbf{x}^*$ ; furthermore, suppose that  $\|\mathbf{x}_0 - \mathbf{x}^{\star}\| \leq R$  and  $\|\nabla f(\mathbf{x})\| \leq B$  for all  $\mathbf{x}$ . Choosing the stepsize  $\gamma := \frac{\pi}{B\sqrt{T}},$ gradient descent yields 

# Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II

### Proof.

▶ Plug  $\|\mathbf{x}_0 - \mathbf{x}^{\star}\| \leq R$  and  $\|\mathbf{g}_t\| \leq B$  into Vanilla Analysis II:

$$\sum_{t=0}^{T-1} \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \le \frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2.$$

• choose  $\gamma$  such that

$$q(\gamma) = \frac{\gamma}{2}B^2T + \frac{R^2}{2\gamma}$$

is minimized.

Solving  $q'(\gamma) = 0$  yields the minimum  $\gamma = \frac{R}{B\sqrt{T}}$ , and  $q(R/(B\sqrt{T})) = RB\sqrt{T}$ .

Dividing by T, the result follows.

min

 $\int (r) = ||e||, is C \cup X$ 

 $||x|| \leq 1$ Limitation S How to be sure 1/2, - x\*11 S R
 Wo knowing x\*? Need to constrain
 gradient undefined for a non-smooth f 2

(3) How to know 
$$\lim_{x \to 1} [\int_{x} (u) \|_{2} \le B \forall x$$
?  
 $\int_{y} (u) = 1 \exists \| \int_{y} (u) \|_{2} \le B \| y - x \|_{2}$   
 $(\| y \|_{1} - \| x \|_{1}) \le B \| y - x \|_{2}$   
 $\| (y \|_{1} - \| x \|_{1}) \le \| y - x \|_{1}^{2} \le \| y - x \|_{2}^{2}$ 

$$[[ 2[1, \leq Sa || 2|]_{2}$$

Eg 2

 $f(x) = (\frac{1}{2}x^T A x)$  $f(x) = x^2 |x| \leq 1$  $\left[\left|\chi\right|\right] \leq 1$ Df(x)=2x  $\int \nabla (x) = \int A x \int_{2}$ 52  $\leq \|A\|_{2} \|x\|_{2} \leq |A||_{2}$ 

70D0 O Run GD on constained domains. 2 Make GD work when franc is not diff.

# Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps III

$$T \ge \frac{R^2 B^2}{\varepsilon^2} \quad \Rightarrow \quad \text{average error} \quad \le \frac{RB}{\sqrt{T}} \le \varepsilon.$$

#### Advantages:

- dimension-independent (no d in the bound)!
- holds for both average, or best iterate

#### In Practice:

What if we don't know R and  $B? \rightarrow \text{Exercise } ??$  (having to know R can't be avoided)

# **Smooth functions**

#### "Not too curved"

### Definition

Let  $f : \mathbf{dom}(f) \to \mathbb{R}$  be differentiable,  $X \subseteq \mathbf{dom}(f)$ ,  $L \in \mathbb{R}_+$ . f is called smooth (with parameter L) over X if

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

$$f \text{ smooth } :\Leftrightarrow f \text{ smooth over } \mathbb{R}^{d}.$$

$$f(\mathbf{y}) = \nabla f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

$$f \text{ smooth } :\Leftrightarrow f \text{ smooth over } \mathbb{R}^{d}.$$

$$f(\mathbf{y}) = \nabla f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

$$f \text{ smooth } :\Leftrightarrow f \text{ smooth over } \mathbb{R}^{d}.$$

$$f(\mathbf{y}) = \nabla f(\mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

$$f \text{ smooth over } \mathbb{R}^{d}.$$

$$f \text{ smooth over } \mathbb{R}^{d}.$$

$$f(\mathbf{y}) = \nabla f(\mathbf{y}) + \frac{L}{2} ||\mathbf{y} - \nabla f(\mathbf{x})|^{2}, \quad \forall \mathbf{y} \in X.$$

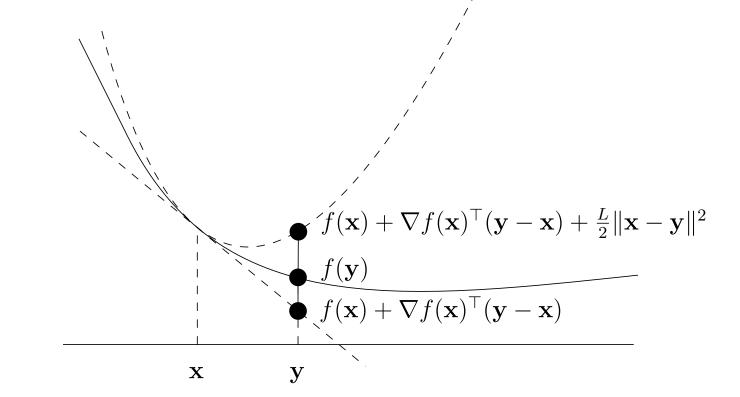
$$f \text{ smooth over } \mathbb{R}^{d}.$$

$$f \text{ smooth over } \mathbb{R}^{d}.$$

 $\|\nabla f(x)\|_{2} \leq L \forall x$ 

# **Smooth functions II**

Smoothness: For any x, the graph of f is below a not /too steep tangent paraboloid at (x,  $f(\mathbf{x})$ ):



# **Smooth functions III**

- ► In general: quadratic functions are smooth (Exercise ??).
- Operations that preserve smoothness (the same that preserve convexity):

### Lemma (Exercise ??)

- (i) Let  $f_1, f_2, \ldots, f_m$  be functions that are smooth with parameters  $L_1, L_2, \ldots, L_m$ , and let  $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$ . Then the function  $f := \sum_{i=1}^m \lambda_i f_i$  is smooth with parameter  $\sum_{i=1}^m \lambda_i L_i$ .
- (ii) Let f be smooth with parameter L, and let  $g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ , for  $A \in \mathbb{R}^{d \times m}$  and  $\mathbf{b} \in \mathbb{R}^d$ . Then the function  $f \circ g$  is smooth with parameter  $L ||A||^2$ , where is ||A|| is the spectral norm of A (Definition ??).

# **Smooth vs Lipschitz**

• Bounded gradients  $\Leftrightarrow$  Lipschitz continuity of f

Smoothness  $\Leftrightarrow$  Lipschitz continuity of  $\nabla f$  (in the convex case).

#### Lemma

Let  $f : \mathbb{R}^d \to \mathbb{R}$  be convex and differentiable. The following two statements are equivalent.

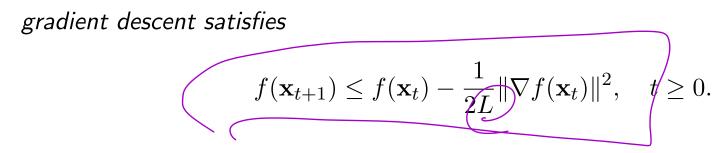
- (i) f is smooth with parameter L.
- (ii)  $\|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\| \le L \|\mathbf{x} \mathbf{y}\|$  for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ .

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.

## **Sufficient decrease**

Lemma Let  $f : \mathbb{R}^d \to \mathbb{R}$  be differentiable and smooth with parameter L. With stepsize

$$\gamma := \frac{1}{L},$$



### Remark

More specifically, this already holds if f is smooth with parameter L over the line segment connecting  $\mathbf{x}_t$  and  $\mathbf{x}_{t+1}$ .

## Sufficient decrease II

$$\mathcal{K}_{\text{full}} \subseteq \mathcal{K}_{\text{full}} = \mathcal{K}_{\text{full}} - \frac{1}{\mathcal{V}} \int (\mathcal{K}_{\text{full}}) f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.$$

### Proof.

Use smoothness and definition of gradient descent  $(\mathbf{x}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L)$ :

$$f(\mathbf{x}_{t+1}) \leq \int (O_{t}) + \nabla \int (O_{t})^{T} (\mathcal{X}_{t+1} - \mathcal{X}_{t}) + \bigcup_{i=1}^{t} ||\mathcal{X}_{i-1} - \mathcal{X}_{i+1}|^{2} + \frac{1}{2} ||\mathcal{X}_{i-1} - \mathcal{X}_{i+1}|^{2} + \frac{1}{2} ||\mathcal{Y}_{i-1} - \mathcal{Y}_{i+1}|^{2} + \frac{$$

USC Optimization for Machine Learning CSCI-599

 $\frac{1}{2c} || || || || || || ||^2$ 

### Sufficient decrease II

### Proof.

Use smoothness and definition of gradient descent  $(\mathbf{x}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L)$ :

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$
  
$$= f(\mathbf{x}_{t}) - \frac{1}{L} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2}$$
  
$$= f(\mathbf{x}_{t}) - \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2}.$$

 $f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.$ 

 $10f(04)|_{1}^{2} \leq 2$ 

f ( I, FA

# Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps

### Theorem

Let  $f : \mathbb{R}^d \to \mathbb{R}$  be convex and differentiable with a global minimum  $\mathbf{x}^*$ ; furthermore, suppose that f is smooth with parameter L. Choosing stepsize

$$\gamma := \frac{1}{L},$$

gradient descent yields

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

# Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps II

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

#### Proof.

Vanilla Analysis II:

$$\sum_{t=0}^{T-1} \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

This time, we can bound the squared gradients by sufficient decrease:

$$\frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \leq \frac{|\sum_{t=0}^{T-1} |\nabla f(\mathbf{x}_t)||^2}{2L + 0} \leq \frac{|\sum_{t=0}^{T-1} |\nabla f(\mathbf{x}_t)||^2}{4! + 0} \leq \frac{|\nabla f(\mathbf{x}_t)||^2}{4!$$

# Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps II

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

#### Proof.

Vanilla Analysis II:

$$\sum_{t=0}^{T-1} \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

This time, we can bound the squared gradients by sufficient decrease:

$$\frac{1}{2L}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}_{t+1})) = f(\mathbf{x}_0) - f(\mathbf{x}_T).$$

## Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps III

Putting it together with  $\gamma = 1/L$ :  $\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$  $\leq f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$  $\geq \overline{f(r)} > 1$ Rewriting:  $() b) - f(x^{*})$  $\sum_{T} \sum_{A=1}^{n} f(x_{A}) - f(x^{A}) \leq \sum_{T} f(x_{A} - x^{A})^{2}$ 

Smooth convex functions:  $\mathcal{O}(1/\varepsilon)$  steps III Putting it together with  $\gamma = 1/L$ :  $\sum_{t=0} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$  $\leq f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$ Rewriting:  $\underbrace{\left( \begin{array}{c} \uparrow \\ \uparrow \end{array} \right)}_{t=1} \left( \begin{array}{c} \sum_{t=1}^{T} \left( f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \right) \leq \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{\star}\|^{2}. \end{aligned} \right)$  $\left( \left( \right) \right)$ As last iterate is the best (sufficient decrease!): L 11x - 2×112  $f(\mathbf{x}_T) - f(\mathbf{x}^{\star}) \leq$ 

USC Optimization for Machine Learning CSCI-599

### Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps III

Putting it together with  $\gamma = 1/L$ :

$$\sum_{t=0}^{T-1} \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$
$$\leq f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Rewriting:

$$\sum_{t=1}^{T} \left( f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \right) \leq \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

As last iterate is the best (sufficient decrease!):

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{1}{T} \left( \sum_{t=1}^T \left( f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \right) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

USC Optimization for Machine Learning CSCI-599

# Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps IV

$$R^2 := \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

$$T \ge \frac{R^2 L}{2\varepsilon} \quad \Rightarrow \quad \text{error} \quad \le \frac{L}{2T} R^2 \le \varepsilon.$$

▶  $50 \cdot R^2 L$  iterations for error  $0.01 \dots$ 

 $\blacktriangleright$  ... as opposed to  $10,000\cdot R^2B^2$  in the Lipschitz case

### In Practice:

What if we don't know the smoothness parameter L?

### $\rightarrow$ Exercise ??

Lemma 2-4

f(x) = x Qx + b x + cis 211 RIL, smooth

Proof-

 $\mathcal{D}'(\mathcal{W}) = 2\mathcal{Q}$  $\| D^2 f(x) \|_{L^{-1}} \leq (|2 Q|_{L^{-1}} = 2 \| Q \|_{L^{-1}})$ 

 $||D_{f}(G) - \nabla_{f}(D_{f})||_{1} =$ 112Qy-16 - (2Qz-16)1,  $= ||_{2}(2(y-x))|_{2})$ 5 21911, 11-2112

Frore i) Sili 15 Li-Smootz 3  $g(\lambda) = \sum_{i=1}^{m} \lambda_i f_i$  is  $(\sum_{i=1}^{n} \lambda_i f_i)$  - Smooth  $\nabla^2_{g(\lambda)} \simeq \prod_{i=1}^{\infty} \lambda_i \nabla^2_{f(\lambda)} \prod_{i=1}^{\infty}$  $\leq \leq \lambda_{i} || \mathcal{D}_{i}^{2}(\alpha) ||_{2}$  $\leq \frac{1}{2} \lambda_i L_i$  $g(x) = \int (Ax+b) \quad \text{is } L[A]^2 s + \delta A$ ī'I )  $V_{g}(x) = A V_{f}(Ax+b)$ 10g())= 1/ A 0/(Ax+6)A 1/2 = man  $|| A(\mathcal{P}/(\mathcal{A} \times \mathbf{b}) A \mathcal{Y}|_2$ Non,

 $\leq mosc (||A||_2) || p^2 / (A) H b (A)$ /ان(( Smar (IAII, IID'S (AX+b) X/(AUI) (1912)  $= ||A(r_{2}^{2} || (r_{2}^{2} / (A x - 1b))||_{2}$  $\int (x) = \int (4)$  $\chi \in (-a,a)$  $\nabla f(\alpha) = 12\alpha^2 \leq 12\alpha^2 + \chi \in (-\alpha_M)$  $|[\nabla_{1}(x)|] = (4x^{3}) \leq 4\tilde{c}$