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The Algorithm

Get near to a minimum x* / close to the optimal value f(x*)?

(Assumptions: f : R? — R convex, differentiable, has a global minimum x*)

Goal: Find x € R? such that
f(x) = f(x") <e.

Note that there can be several global minima x7 # x5 with f(x7) = f(x3).

Iterative Algorithm: choose x; € R?.
X1 0= x¢ — YV f(x¢),

for timesteps ¢t = 0,1,..., and stepsize v > 0.
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Abbreviate g, := V f(x;) (gradient descent: g; = (x; — X¢41)/7)-

g/l (x—x*) =
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Abbreviate g, := V f(x;) (gradient descent: g; = (x; — X¢41)/7)-

1
g/l (x—x*) = ;(Xt —xi41) | (% — x¥).

> Apply 2vTw = ||v]|? + ||[w]]? — ||[v—w]|? to rewrite

g/ (x¢—x*) =
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Abbreviate g, := V f(x;) (gradient descent: g; = (x; — X¢41)/7)-

1
g/l (x—x*) = ;(Xt —xi41) | (% — x¥).

> Apply 2vTw = ||v]|? + ||[w]]? — ||[v—w]|? to rewrite
1
gl (x—x") = 2 (llxe =4I + [l =17 = [[xe1 —x*[|%)
0% 1
= lel*+ > (e =3*11% = flxce1 =)

» Sum this up over the first T iterations:

T-1
> gl (xi—x) =
t=0
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Abbreviate g, := V f(x;) (gradient descent: g; = (x; — X¢41)/7)-

1
g/l (x—x*) = ;(Xt —xi41) | (% — x¥).

> Apply 2vTw = ||v]|? + ||[w]]? — ||[v—w]|? to rewrite
1
gl (x—x") = 2 (llxe =4I + [l =17 = [[xe1 —x*[|%)

0% 1
= 5||g1tH2 + 5 (e =x*11* = [Ixe41—x]%)

» Sum this up over the first T iterations:

T—
0
> 8 —x") = 52\\gt|12+f =2 =[xz =12
t=0
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Vanilla analysis 1l

Use first-order characterization of convexity: f(y) > f(x) + Vf(x) " (y — x),Vx,y

> with x = x4,y = x*:
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Vanilla analysis 1l

Use first-order characterization of convexity: f(y) > f(x) + Vf(x) " (y — x),Vx,y

> with x = x4,y = x*:

Fo) = f(x") < g/ (x — %)

giving

=
L

(fxe) = f(x9)) <

if
o
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Vanilla analysis |l

Use first-order characterization of convexity: f(y) > f(x) + Vf(x) " (y — x),Vx,y

>

with x = x4,y = x*:

Flxe) = f(x*) < g/ (e —x%)
giving

S
L

T—

=3
t

I
<)

an upper bound for the average error f(x;) — f(x*) over the steps

last iterate is not necessarily the best one

stepsize is crucial
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Lipschitz convex functions: O(1/¢?) steps
Assume that all gradients of f are bounded in norm.

» Equivalent to f being Lipschitz (Theorem ??7; Exercise ?7).
» Rules out many interesting functions (for example, the “supermodel’ f(z) = x?)
Theorem

Let f: R* = R be convex and differentiable with a global minimum x*; furthermore,
suppose that ||xo — x*|| < R and ||V f(x)|| < B for all x. Choosing the stepsize

R
v BYT’
gradient descent yields
T—1
1 N RB
il _ < =
T f(xt) f(X ) = \/T

t=
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Lipschitz convex functions: O(1/¢?) steps Il

Proof.
» Plug [|xp — x*|| < R and ||g¢|| < B into Vanilla Analysis II:
T—1 _a - ] y 1
N 2 - o *|2 < *B2T 7R2.
; (f(xe) — <35 Z; Igell” + 2,y||X0 X7 < 9 + 2y

» choose v such that
2
Y 2 R
= BT+ —
a(7) = 5 2
is minimized.

» Solving ¢/(v) = 0 yields the minimum ~ = B—%, and ¢(R/(BVT)) = RBVT.
» Dividing by T', the result follows.
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Lipschitz convex functions: O(1/¢?) steps Il

IN
™

= average error <

SIE

Advantages:

» dimension-independent (no d in the bound)!

» holds for both average, or best iterate

In Practice:
What if we don't know R and B? — Exercise ?? (having to know R can't be avoided)
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Smooth functions

“Not too curved”

Definition
Let f: dom(f) — R be differentiable, X C dom(f), L € R;. f is called smooth
(with parameter L) over X if

F9) < F6+ 95Ty =3+ Sk - y% Wy € X,

f smooth :< f smooth over RY.

Definition does not require convexity (useful later)
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Smooth functions || ;

Smoothness: For any x, the graph of f is below a not ’too steep tangent paraboloid at

(x, f(x)): /
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Smooth functions Il

» In general: quadratic functions are smooth (Exercise 77).

» Operations that preserve smoothness (the same that preserve convexity):
Lemma (Exercise ?7)

(i) Let f1, fa,..., fm be functions that are smooth with parameters L1, Lo, ..., Ly,
and let M1, A2, ..., A\ € Ry. Then the function f :=>""" X\ifi is smooth with
parameter y " | N\iL;.

(i) Let f be smooth with parameter L, and let g(x) = Ax + b, for A € R¥™*™ and
b € R?. Then the function f o g is smooth with parameter L||A||?, where is || A|
is the spectral norm of A (Definition 7?).
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Smooth vs Lipschitz

» Bounded gradients < Lipschitz continuity of f
» Smoothness < Lipschitz continuity of V f (in the convex case).

Lemma
Let f: RY — R be convex and differentiable. The following two statements are

equivalent.

(i) f is smooth with parameter L.
(i) IVf(x) = VI < Lix - yll for all x,y € R”.

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.
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Sufficient decrease

Lemma
Let f : R? — R be differentiable and smooth with parameter L. With stepsize

1
ry T La
gradient descent satisfies

Floxen) < 7o) = 5= VG, 120

Remark
More specitically, this already holds if f is smooth with parameter L over the line

segment connecting x; and Xy 1.
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Sufficient decrease |l

Fosen) < Fx0) — 5 IV A G0

Proof.
Use smoothness and definition of gradient descent (x;11 — x; = =V f(x¢)/L):

f(xe1) <
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Sufficient decrease ||

Fosen) < Fx0) — 5 IV A G0

Proof.
Use smoothness and definition of gradient descent (x;11 —x; = =V f(x¢)/L):

FOurt) < S00) + V6T (et = x0)+ 5 e = x|
1 1
= 1000 = LIVSGOIP + 519 P

= 6w) = 57 IV
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Smooth convex functions: O(1/¢) steps

Theorem
Let f: R?* = R be convex and differentiable with a global minimum x*; furthermore,
suppose that f is smooth with parameter L. Choosing stepsize

1
’7 T L7
gradient descent yields

fxr) = f(x") < gllxo = x“[B, T >0
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Smooth convex functions: O(1/¢) steps Il
* L * (|12
fxr) = f(x7) < opllxo — x5, T > 0.

Proof.
Vanilla Analysis Il:

T

|
—

T-1
gl L x
(FGx) = () < 5 ; IVFGI + o= llxo — x|

t

Il
=)

This time, we can bound the squared gradients by sufficient decrease:

S
-

1

2L
t

IVF(xo)? <

Il
=)
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Smooth convex functions: O(1/¢) steps Il
* L * (|12
fxr) = f(x7) < opllxo — x5, T > 0.

Proof.
Vanilla Analysis Il:

T

|
—

T-1
gl L x
(FGx) = () < 5 ; IVFGI + o= llxo — x|

t

Il
=)

This time, we can bound the squared gradients by sufficient decrease:

1 T—-1 T—-1
57 2 IVFG)IP < Y (F(xe) = f(xean)) = f(x0) = f(x)-
t=0 t=0
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Smooth convex functions: O(1/¢) steps Il
Putting it together with v = 1/L:

T-1

S
—

S (6~ SN S 5z S IVFGI? + Gl — X
t=0 =0
< flx) — Fer) + 2w — %

Rewriting:
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Smooth convex functions: O(1/¢) steps Il
Putting it together with v = 1/L:

T-1 1 T—-1 I
ST UG = F6) < 5 SO IV + 5 ko — x|
t=0 t=0

< flxo) — FOxr) + Zixo — x|

Rewriting:

As last iterate is the best (sufficient decrease!):

fxr) = f(x") <
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Smooth convex functions: O(1/¢) steps Il
Putting it together with v = 1/L:

T-1 1 T-1 I
D (o) = f)) < g D VI + F ko =7
t=0 t=0

< flxo) — FOxr) + Zixo — x|

Rewriting:

As last iterate is the best (sufficient decrease!):

1 (& L
fler) = () < (Z (f(xe) — f(X*))) < %o — x*|.

t=1
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Smooth convex functions: O(1/¢) steps IV

R? := ||xo — x*||2.

R%L

L
T>—"= = < —R’<c.
> error_2T <e

2e

» 50 - R?L iterations for error 0.01 ...
» .. .as opposed to 10,000 - R2B? in the Lipschitz case

In Practice:
What if we don't know the smoothness parameter L7

— Exercise 7?7
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