Optimization for Machine Learning CSCI-599

Lecture 3: Constrained and Non-Smooth Gradient Descent

Sai Praneeth Karimireddy

USC - https://spkreddy.org/optmlspring2025.html January 29, 2025

fis non-smooth => grad is undefined? Lo subgradient con always escists arenywhere Q(L) if bounded subgroad llg(x) ||2 ≤ B=) subgradient RB 170-2*11 ER without knowing 2*? constrained of Amizathan mix f(n) -> cux -> bounded => 1xo-2"112 < dian (X) max II g(x) 1/2 S B $I_{t+1} = I(X_t - Yg(x_t))$ $||(x-y)||_{2} \geq ||(y)||_{2}$

$$\begin{array}{lll}
\mathcal{L}_{t,1} &= & & & & & & & & & & & & \\
\mathcal{L}_{t,2} &= & & & & & & & & & \\
\mathcal{L}_{t,2} &= & & & & & & & \\
\mathcal{L}_{t,2} &= & & & & & & \\
\mathcal{L}_{t,2} &= & & & & & \\
\mathcal{L}_{t,2} &= & & & & \\
\mathcal{L}_{$$

Edrand $\left(\left(\chi_{t} \right) + \left(\left(\chi_{t} \right) + \left(\chi_{t} \right) \left(\chi_{t} \right) \right) \right)$ L 1 x - x 1/2 - 2211 D()1₄)11² = \((9+) + \(\frac{1}{2} \) \(\frac{1}{4+1} \) \(\frac{1}{2} \) $-\frac{1}{2}$ $((()'_{1})/(2)$ $\left\| \left(\left(x_{+} \right) \right) \right\|_{2}^{2} \leq 2L \left(\left(\left(\left(x_{+} \right) - \left(\left(x_{+} \right) \right) \right) \right)$ + L 11 x - y 1 1 2

 $|| \int_{A+1}^{A} - \chi^{4}||_{2}^{2} = || \chi_{4}^{2} - \chi^{4}||_{2}^{2} - 2\chi^{4}||_{2}^{2} + \chi^{2}|| \chi_{4}^{2} - \chi^{4}||_{2}^{2} + \chi^{4}|| \chi_{4}^{2} - \chi^{4}||_{2}^{2} - \chi^{4}||_{2}^{2} + \chi^{4}|| \chi_{4}^{2} - \chi^{4}||_{2}^{2} - \chi^{4}||_{2}^{2} + \chi^{4}||_{2}^{2}$

Substituting ou bound on grad,
$$||x_{t+1} - x^{2}||^{2} \leq ||x_{p} - x^{2}||^{2} - 28 \langle r f(x_{1}), x_{1}, x_{2} \rangle$$

$$+ 8^{2} \left(2L \left(f(x_{1}) - f(x_{p+1})\right) + L^{2} ||x_{1} - x_{1}||^{2} \right)$$

$$- ||x_{1} - y_{1}||^{2}$$

$$+ 2 \left(2L \left(f(x_{1}) - f(x_{p+1})\right) + L^{2} ||x_{1} - x_{1}||^{2} \right)$$

$$- ||x_{1} - y_{1}||^{2}$$

$$+ 2 \left(2L \left(f(x_{1}) - f(x_{p+1})\right) + L^{2} ||x_{1} - x_{1}||^{2} \right)$$

$$- ||x_{1} - y_{1}||^{2} + ||x_{1} - y_{1}||^{2} + ||x_{1} - x_{1}||^{2} + ||x$$

 $\langle \mathcal{N}(\mathcal{X}^{+}), \mathcal{X}^{+} - \mathcal{X}^{+} \rangle \leq \frac{2}{4} \left[\left(\mathcal{X}^{+} - \mathcal{X}^{+} \right) \left(\mathcal{X}^{+} - \mathcal{X}^{+} \right) \right]$ $\frac{1}{2} \left(\frac{1}{1} \right) - \left(\frac$ 11 x - 3" [2 = [] x - 1" [- - -] [] - - -] [] = -] [] $=) \frac{1}{2} \frac{1}{2}$ =) $((x_{4+1}-x_{4})_{5} \leq ((-1)_{5})_{5} ((x_{5}-x_{5})_{5})_{5}$

So far: Error decreases with $1/\sqrt{T}$, or 1/T...

Could it decrease exponentially in T?

ightharpoonup On $f(x):=x^2$: Stepsize $\gamma:=\frac{1}{2}$ (f is L=2 - smooth)

$$x_{t+1} = x_t - \frac{1}{2}\nabla f(x_t) = x_t - x_t = 0,$$

converged in one step!

$$x_{t+1} = x_t - \frac{1}{2}\nabla f(x_t) = x_t - x_t = 0,$$

- converged in one step!
- Same $f(x) := x^2$: Stepsize $\gamma := \frac{1}{4}$ (f is L = 4 smooth)

$$x^{2}: \text{ Stepsize } \gamma := \frac{1}{4} \text{ is } \underline{L} = 4 - \text{smooth}$$

$$x_{t+1} = x_{t} - \frac{1}{4} \nabla f(x_{t}) =$$

$$x_{t} = \frac{1}{4} \nabla f(x_{t}) =$$

1 = 1

$$\text{On } f(x) := x^2 \text{: Stepsize } \gamma := \frac{1}{2} \text{ (f is $L=2$ - smooth)}$$

$$x_{t+1} = x_t - \frac{1}{2} \nabla f(x_t) = x_t - x_t = 0, \text{ (f is $L=2$ - smooth)}$$

▶ Same
$$f(x) := x^2$$
: Stepsize $\gamma := \frac{1}{4}$ (f is $L = 4$ - smooth)

so
$$f(x_t) = 2$$

$$E \text{ Polos} \leq \left(\left(-\frac{1}{4} \right) - \frac{3}{4} \right) + \frac{x_t}{2} = \frac{x_t}{2},$$

ightharpoonup On $f(x):=x^2$: Stepsize $\gamma:=\frac{1}{2}$ (f is L=2 - smooth)

$$x_{t+1} = x_t - \frac{1}{2}\nabla f(x_t) = x_t - x_t = 0,$$

- converged in one step!
- ▶ Same $f(x) := x^2$: Stepsize $\gamma := \frac{1}{4}$ (f is L = 4 smooth)

$$x_{t+1} = x_t - \frac{1}{4}\nabla f(x_t) = x_t - \frac{x_t}{2} = \frac{x_t}{2},$$

so
$$f(x_t) = f\left(\frac{x_0}{2^t}\right) = \frac{1}{2^{2t}}x_0^2$$
.

Exponential in t!

Strongly convex functions

"Not too flat"

Definition

Let $f: \mathbf{dom}(f) \to \mathbb{R}$ be a differentiable function, $X \subseteq \mathbf{dom}(f)$ convex and $\mu \in \mathbb{R}_+, \mu > 0$. Function f is called strongly convex (with parameter μ) over X if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

$$\text{emma (Exercise 21)}$$

Lemma (Exercise 21)

If f is strongly convex with parameter $\mu > 0$, then f is strictly convex and has a unique global minimum.

Strongly convex functions II

Strong convexity: For any x, the graph of f is above a f not too flat tangential paraboloid at (x, f(x)):

 $\sum_{i} \left(\chi_{i} \right)^{T} \left(\chi_{i} - \chi_{*} \right) \geq \left(\chi_{i} \right)^{-1} \left(\chi_{*} \right)$ + M/1x-x1/2 (g) + P(x) (S-4) + 11 11 2 - 2/12 1100 $X = X_{+}, \quad Y = X^{*}$ $\frac{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x^{*} \rangle}{\langle \mathcal{D}_{f}(x_{+})|^{2}} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}} \rangle}{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x^{*} \rangle} = \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x^{*} \rangle} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x^{*} \rangle} = \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x^{*} \rangle} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+}), x_{+} - x_{+} \rangle} = \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal{D}_{f}(x_{+})|^{2}} + \frac{1}{26} \frac{\langle \mathcal{D}_{f}(x_{+})|^{2}}{\langle \mathcal$ (f(3)-1) + M 111, 2×112 (f(3) +x)+ $= \sum_{k=1}^{L} ||x_{k-1}||^{2} \leq (1-\frac{u}{L})^{2} + ||x_{k-1}||^{2} + ||x_{k-1}||^{2}$

Want to show: $\lim_{t\to\infty} \mathbf{x}_t = \mathbf{x}^*$

Vanilla Analysis:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

Now use stronger lower bound on left hand side, coming from strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge$$

USC Optimization for Machine Learning CSCI-599

Want to show: $\lim_{t\to\infty} \mathbf{x}_t = \mathbf{x}^*$

Vanilla Analysis:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

Now use stronger lower bound on left hand side, coming from strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2$$

Putting it together:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le$$

Want to show: $\lim_{t\to\infty} \mathbf{x}_t = \mathbf{x}^*$

Vanilla Analysis:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

Now use stronger lower bound on left hand side, coming from strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2$$

Putting it together:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{1}{2\gamma} \left(\gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \right) - \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^*\|^2.$$

Rewriting:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 <$$

Want to show: $\lim_{t\to\infty} \mathbf{x}_t = \mathbf{x}^*$

Vanilla Analysis:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

Now use stronger lower bound on left hand side, coming from strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) + \frac{\mu}{2} ||\mathbf{x}_t - \mathbf{x}^{\star}||^2$$

Putting it together:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{1}{2\gamma} \left(\gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \right) - \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^*\|^2.$$

Rewriting:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} + (1 - \mu\gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

$$\underline{\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2} \le 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \underline{(1 - \mu\gamma)\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2}.$$

Squared distance to x^* goes down by a constant factor, up to some "noise".

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable with a global minimum \mathbf{x}^* ; suppose that f is smooth with parameter L and strongly convex with parameter $\mu > 0$. Choosing $\gamma := \frac{1}{L}$, gradient descent with arbitrary \mathbf{x}_0 satisfies the following two properties.

(i) Squared distances to x^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2, \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2} \left(1 - \frac{\mu}{L} \right)^T \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

$$\underline{\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2} \le 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \underline{(1 - \mu\gamma)\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2}.$$

Proof of (i).

Bounding the noise:

$$2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 =$$

$$\underline{\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2} \le 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \underline{(1 - \mu\gamma)\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2}.$$

Proof of (i).

Bounding the noise:

$$\gamma=1/L$$
 , sufficient decrease

$$2\gamma(f(\mathbf{x}^{*}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} = \frac{2}{L} (f(\mathbf{x}^{*}) - f(\mathbf{x}_{t})) + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \frac{2}{L} (f(\mathbf{x}_{t+1}) - f(\mathbf{x}_{t})) + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq -\frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2} = 0.$$

Hence, the noise is nonpositive, and we get (i):

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le (1 - \mu \gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} = \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

Proof of (ii).

From (i):

$$\|\mathbf{x}_T - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

Smoothness together with $\nabla f(\mathbf{x}^*) = \mathbf{0}$:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \nabla f(\mathbf{x}^*)^\top (\mathbf{x}_T - \mathbf{x}^*) + \frac{L}{2} \|\mathbf{x}_T - \mathbf{x}^*\|^2 = \frac{L}{2} \|\mathbf{x}_T - \mathbf{x}^*\|^2.$$

Putting it together:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2} \|\mathbf{x}_T - \mathbf{x}^*\|^2 \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

$$R^2 := \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

$$T \ge \frac{L}{\mu} \ln \left(\frac{R^2 L}{2\varepsilon} \right) \quad \Rightarrow \quad \operatorname{error} \ \le \frac{L}{2} \left(1 - \frac{\mu}{L} \right)^T R^2 \le \varepsilon.$$

Conclusion: To reach absolute error at most ε , we only need $\mathcal{O}(\log \frac{1}{\varepsilon})$ iterations, e.g.

- $ightharpoonup \frac{L}{\mu} \ln(50 \cdot R^2 L)$ iterations for error $0.01 \dots$
- ightharpoonup ...as opposed to $50 \cdot R^2 L$ in the smooth case

In Practice:

What if we don't know the smoothness parameter L?

 \rightarrow (similar to) **Exercise 15**

$$\int (x) = |x|$$

$$\int (x) = ||x||,$$

$$= \sum_{i} |x_{i}|$$

$$\int (x) = ||x||,$$

$$\int |x_{i}| = \sum_{i} |x_{i}|$$

$$\int |x_{i}| = \sum_{i}$$

Chapter 3

Projected Gradient Descent

$$\mathcal{T}(x) = \int (x) + \int \mathcal{I}(x) + \int \mathcal{I}(x) = \int (x) + \int (x) = \int (x) + \int (x) = \int$$

Constrained Optimization

Constrained Optimization Problem

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in X$

Solving Constrained Optimization Problems

- A Projected Gradient Descent
- B Transform it into an *unconstrained* problem

Constrained Optimization

Solving Constrained Optimization Problems

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in X$

► Here: Projected Gradient Descent

Projected Gradient Descent

Idea: project onto X after every step: $\Pi_X(\mathbf{y}) := \operatorname{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{y}\|$

Projected gradient descent: $\mathbf{x}_{t+1} := \Pi_X [\mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)]$

The Algorithm

Projected gradient descent:

$$\mathbf{y}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$$
 $\mathbf{x}_{t+1} := \Pi_X(\mathbf{y}_{t+1}) = \underset{\mathbf{x} \in X}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}_{t+1}\|^2.$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \geq 0$.

Properties of Projection

Fact

Let $X\subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x}\in X, \mathbf{y}\in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \le 0.$$

(ii) $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\overline{\mathbf{y} - \Pi_X(\mathbf{y})}\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$

Properties of Projection II

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \le 0.$$

(ii) $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2.$

Proof.

(i) $\Pi_X(\mathbf{y})$ is minimizer of (differentiable) convex function $d_{\mathbf{y}}(\mathbf{x}) = \|\mathbf{x} - \mathbf{y}\|^2$ over X. By first-order characterization of optimality (Lemma 1.28),

$$0 \leq \nabla d_{\mathbf{v}}(\Pi_X(\mathbf{y}))^{\top}(\mathbf{x} - \Pi_X(\mathbf{y}))$$

Properties of Projection II

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and \mathbb{R}^d .

(i) $(\mathbf{x} \cap \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0$. $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \leq \|\mathbf{x} - \mathbf{y}\|^2.$ $\mathcal{C} = \mathcal{C}_{\mathsf{fortion}} d_{\mathbf{v}}(\mathbf{x}) = \|\mathbf{x} - \mathbf{y}\|^2 \text{ over } X.$

$$|\mathbf{x} - \mathbf{H}_{X}(\mathbf{y})| (\mathbf{y} - \mathbf{H}_{X}(\mathbf{y})) \leq 0.$$

$$|\mathbf{y} - \mathbf{H}_{Y}(\mathbf{y})|^{2} + ||\mathbf{y} - \mathbf{H}_{Y}(\mathbf{y})|^{2} \leq 0.$$

$$\frac{-\mathbf{y}\|^2}{1} \cdot \frac{1}{1} \times \frac{1}{2} \cdot \frac{1}{2}$$

By first-order characterization of optimality (Lemma 1.28),

Properties of Projection III

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(ii)
$$\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$$
.

Proof.

(ii)

$$\mathbf{v} := (\mathbf{x} - \Pi_X(\mathbf{y})), \quad \mathbf{w} := (\mathbf{y} - \Pi_X(\mathbf{y})).$$

By (i),

$$0 > 2\mathbf{v}^{\mathsf{T}}\mathbf{w} =$$

Properties of Projection III

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top}(\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(ii)
$$\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$$
.

Proof.

(ii)

$$\mathbf{v} := (\mathbf{x} - \Pi_X(\mathbf{y})), \quad \mathbf{w} := (\mathbf{y} - \Pi_X(\mathbf{y})).$$

By (i),

$$0 \ge 2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^{2} + \|\mathbf{w}\|^{2} - \|\mathbf{v} - \mathbf{w}\|^{2}$$
$$= \|\mathbf{x} - \Pi_{X}(\mathbf{y})\|^{2} + \|\mathbf{y} - \Pi_{X}(\mathbf{y})\|^{2} - \|\mathbf{x} - \mathbf{y}\|^{2}.$$

Results for projected gradient descent over closed and convex X

The same number of steps as gradient over \mathbb{R}^d !

- Lipschitz convex functions over $X: \mathcal{O}(1/\varepsilon^2)$ steps
- ▶ Smooth convex functions over $X: \overline{\mathcal{O}(1/\varepsilon)}$ steps
- ▶ Smooth and strongly convex functions over $X: \mathcal{O}(\log(1/\varepsilon))$ steps

We will adapt the previous proofs for gradient descent.

BUT:

- lacktriangle Each step involves a projection onto X
- may or may not be efficient (in relevant cases, it is)...

Lipschitz convex functions over X: $\mathcal{O}(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm over closed and convex X.

- \blacktriangleright Equivalent to f being Lipschitz over X (Theorem 1.10; Exercise 12).
- ightharpoonup Many interesting functions are Lipschitz over bounded sets X.

Theorem (same as the unconstrained one, but more useful)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, $X \subseteq \mathbb{R}^d$ closed and convex, \mathbf{x}^* a minimizer of f over X; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$ with $\mathbf{x}_0 \in X$, and that $\|\nabla f(\mathbf{x})\| \le B$ for all $\mathbf{x} \in X$. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}},$$

projected gradient descent yields

$$\frac{1}{T} \sum_{t=0}^{T-1} f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{RB}{\sqrt{T}}.$$

yt+1

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\underline{\mathbf{y}_{t+1}} - \mathbf{x}^{\star}\|^2 \right).$$

- ► Use Fact (ii): $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.
- lacksquare With $\mathbf{x}=\mathbf{x}^{\star},\mathbf{y}=\mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y})=\mathbf{x}_{t+1}$, and hence

$$||x_{+1}-x^{*}||^{2} = ||T_{X}(x_{+}-\delta g_{+})-T_{X}(x_{+})||^{2}$$

$$\leq ||x_{+}-\delta g_{+}-x^{*}||^{2}$$

$$= ||x_{+}-x^{*}||^{2} - 2\delta g_{+}^{2} (|x_{+}-x^{*}|)^{2} + \delta |g||^{2}$$

=> $\int g_{+}^{+}(x_{1}-x^{2}) \leq \int ||x_{2}-x^{2}||^{2} + \frac{x}{2} ||g_{1}||^{2}$ => $\int (|x_{1}-x^{2}|) \leq \int ||x_{2}-x^{2}|| \leq R$ => $\int (|x_{1}-x^{2}|) \leq \frac{R}{2} = \frac{R}{2}$ => $\int (|x_{1}-x^{2}|) \leq \frac{R}{2} = \frac{R}{2}$

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\underline{\mathbf{y}_{t+1}} - \mathbf{x}^{\star}\|^2 \right).$$

- ► Use Fact (ii): $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.
- lacksquare With $\mathbf{x}=\mathbf{x}^{\star},\mathbf{y}=\mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y})=\mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^{\star} - \mathbf{x}_{t+1}\|^2 \leq \|\mathbf{x}^{\star} - \mathbf{y}_{t+1}\|^2$$

▶ We go back to the original vanilla analyis and continue from there as before:

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\underline{\mathbf{y}_{t+1}} - \mathbf{x}^{\star}\|^2 \right).$$

- ► Use Fact (ii): $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.
- $lackbox{With } \mathbf{x}=\mathbf{x}^\star,\mathbf{y}=\mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y})=\mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^{\star} - \mathbf{x}_{t+1}\|^2 \leq \|\mathbf{x}^{\star} - \mathbf{y}_{t+1}\|^2$$

▶ We go back to the original vanilla analyis and continue from there as before:

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \leq \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\underline{\mathbf{x}_{t+1}} - \mathbf{x}^{\star}\|^2 \right).$$

Smooth functions over \boldsymbol{X}

Recall:

f is called smooth (with parameter L) over X if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable and smooth with parameter L over X. Choosing stepsize

$$\gamma := \frac{1}{L},$$

projected gradient descent with arbitrary $x_0 \in X$ satisfies

$$\int f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0.$$

Remark

More specifically, this already holds if f is smooth with parameter L over the line

segment connecting
$$\mathbf{x}_t$$
 and \mathbf{x}_{t+1} .
$$\left(\left(\chi_{t+1} \right) \leq \left(\left(\chi_{t} \right) - \left(\chi_{t} \right)^{\top} \left(\chi_{t+1} - \chi_{t} \right) + \left(\left(\chi_{t+1} - \chi_{t} \right)^{\top} \right)^{2} \right)$$

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness

USC Optimization for Machine Learning CSCI-599

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - L(\mathbf{y}_{t+1} - \mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness, $\mathbf{y}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L$

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - L(\mathbf{y}_{t+1} - \mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - \frac{L}{2} (\|\mathbf{y}_{t+1} - \mathbf{x}_t\|^2 + \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness, $\mathbf{y}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L$, $2\mathbf{v}^\top \mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - L(\mathbf{y}_{t+1} - \mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - \frac{L}{2} (\|\mathbf{y}_{t+1} - \mathbf{x}_t\|^2 + \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2$$

$$= f(\mathbf{x}_t) - \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_t\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$$

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness, $\mathbf{y}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L$, $2\mathbf{v}^\top \mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - L(\mathbf{y}_{t+1} - \mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{L}{2} (\|\mathbf{y}_{t+1} - \mathbf{x}_{t}\|^{2} + \|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t}\|^{2} + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a closed convex set, and assume that there is a minimizer \mathbf{x}^* of f over X; furthermore, suppose that f is smooth over X with parameter L. Choosing stepsize

$$\gamma := \frac{1}{L},$$

projected gradient descent yields

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

As before, use sufficient decrease to bound sum of squared gradients in vanilla analysis:

$$\frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 \le f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$$

But now: extra term $\frac{L}{2} ||\mathbf{y}_{t+1} - \mathbf{x}_{t+1}||^2$.

Compensate in the vanilla analysis itself!

Recall: Constrained vanilla analysis

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{*}) = \frac{1}{2\gamma} \left(\gamma^{2} \|\mathbf{g}_{t}\|^{2} + \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}^{*}\|^{2} \right).$$

Use Fact (ii): $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$. With $\mathbf{x} = \mathbf{x}^*, \mathbf{y} = \mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y}) = \mathbf{x}_{t+1}$, and hence

Recall: Constrained vanilla analysis

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{*}) = \frac{1}{2\gamma} \left(\gamma^{2} \|\mathbf{g}_{t}\|^{2} + \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}^{*}\|^{2} \right).$$

Use Fact (ii): $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$. With $\mathbf{x} = \mathbf{x}^*, \mathbf{y} = \mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y}) = \mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^* - \mathbf{x}_{t+1}\|^2 + \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 \le \|\mathbf{x}^* - \mathbf{y}_{t+1}\|^2$$

We get back to the vanilla analysis...but with a saving!

Recall: Constrained vanilla analysis

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{y}_{t+1} - \mathbf{x}^{\star}\|^2 \right).$$

Use Fact (ii): $\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$. With $\mathbf{x} = \mathbf{x}^*, \mathbf{y} = \mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y}) = \mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^{\star} - \mathbf{x}_{t+1}\|^2 + \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 \le \|\mathbf{x}^{\star} - \mathbf{y}_{t+1}\|^2$$

We get back to the vanilla analysis...but with a saving!

$$\mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star}) \leq \frac{1}{2\gamma} \left(\gamma^{2} \|\mathbf{g}_{t}\|^{2} + \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2} \right)$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use
$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$$
 (convexity)

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \sum_{t=0}^{T-1} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} ||\mathbf{y}_{t+1} - \mathbf{x}_{t+1}||^2 \right)$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 \right) = f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_{t}) - f(\mathbf{x}^{*})) \leq \sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})
\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{L}{2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2} - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 \right) = f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Putting it together: extra terms cancel, and as in unconstrained case, we get

$$\sum_{t=1}^{T} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Exercise ??: again, we make progress in every step (not immediate from sufficient decrease here). Hence,

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{1}{T} \sum_{t=1}^{T} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Smooth and strongly convex functions over X

Recall:

f is strongly convex (with parameter μ) over X if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

Smooth and strongly convex functions over X

Exercise ??: a strongly convex function has a unique minimizer \mathbf{x}^* of f over X.

We prove that projected gradient descent converges to x^* .

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a nonempty closed and convex set and suppose that f is smooth over X with parameter L and strongly convex over X with parameter $\mu > 0$. Choosing $\gamma := \frac{1}{L}$, projected gradient descent with arbitrary \mathbf{x}_0 satisfies the following two properties.

(i) Squared distances to x^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}, \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \|\nabla f(\mathbf{x}^*)\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_0 - \mathbf{x}^*\|$$
$$+ \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a nonempty closed and convex set and suppose that f is smooth over X with parameter L and strongly convex over X with parameter $\mu > 0$. Choosing $\gamma := \frac{1}{L}$, projected gradient descent with arbitrary \mathbf{x}_0 satisfies the following two properties.

(i) Squared distances to x^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2, \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \|\nabla f(\mathbf{x}^*)\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_0 - \mathbf{x}^*\| \leftarrow \text{in general, } \nabla f(\mathbf{x}^*) \neq \mathbf{0}!$$
$$+ \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0. \leftarrow \text{as in unconstrained case}$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps I

Proof.

- (i) Geometric decrease plus noise: $\|\mathbf{x}_{t+1} \mathbf{x}^{\star}\|^2 \leq \cdots$
 - unconstrained case:

$$2\gamma (f(\mathbf{x}^*) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \underline{(1 - \mu\gamma)} \|\mathbf{x}_t - \mathbf{x}^*\|^2.$$

constrained case (vanilla analysis with a saving):

$$2\gamma (f(\mathbf{x}^*) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 + (1 - \mu \gamma) \|\mathbf{x}_t - \mathbf{x}^*\|^2.$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps II

Proof.

To bound the noise, we use sufficient decrease.

unconstrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 \qquad , \quad t \ge 0.$$

constrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0.$$

Putting it together, the terms $\|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$ cancel, and we get

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps II

Proof.

To bound the noise, we use sufficient decrease.

unconstrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2I} \|\nabla f(\mathbf{x}_t)\|^2$$
 , $t \ge 0$.

constrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0.$$

Putting it together, the terms $\|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$ cancel, and we get

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le (1 - \mu \gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} = \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

in both cases.

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps III

Proof.

(ii) Error bound from smoothness:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^*)^\top (\mathbf{x}_T - \mathbf{x}^*) + \frac{L}{2} ||\mathbf{x}^* - \mathbf{x}_T||^2$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps III

Proof.

(ii) Error bound from smoothness:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^*)^\top (\mathbf{x}_T - \mathbf{x}^*) + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_T\|^2$$

$$\leq \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}_T - \mathbf{x}^*\| + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_T\|^2 \text{ (Cauchy-Schwarz)}$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps III

Proof.

(ii) Error bound from smoothness:

$$f(\mathbf{x}_{T}) - f(\mathbf{x}^{\star}) \leq \nabla f(\mathbf{x}^{\star})^{\top} (\mathbf{x}_{T} - \mathbf{x}^{\star}) + \frac{L}{2} \|\mathbf{x}^{\star} - \mathbf{x}_{T}\|^{2}$$

$$\leq \|\nabla f(\mathbf{x}^{\star})\| \|\mathbf{x}_{T} - \mathbf{x}^{\star}\| + \frac{L}{2} \|\mathbf{x}^{\star} - \mathbf{x}_{T}\|^{2} \text{ (Cauchy-Schwarz)}$$

$$\leq \|\nabla f(\mathbf{x}^{\star})\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_{0} - \mathbf{x}^{\star}\| + \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^{T} \|\mathbf{x}_{0} - \mathbf{x}^{\star}\|^{2}. \text{ (i)}$$

constrained error bound $\approx \sqrt{\text{unconstrained error bound}}$ required number of steps roughly doubles.

Computing $\Pi_X(\mathbf{y})$ is an optimization problem itself.

When do we want to constrain?

L) bond [xo-x*[] = R

Regularizer in ML

Can une project onto constemnt?

Computing $\Pi_X(\mathbf{y})$ is an optimization problem itself.

It can efficiently be solved in relevant cases:

fis M-S.CCX, best non-smooth Weight drown,

-xis spare =) $||x||, \leq R$

- X is comateix and low sank => TR(X) < R Xis symm psd

Tx(X) = Siern

iern

Computing $\Pi_X(\mathbf{y})$ is an optimization problem itself.

It can efficiently be solved in relevant cases:

 Projecting onto an affine subspace (leads to system of linear equations, similar to least squares)

Computing $\Pi_X(\mathbf{y})$ is an optimization problem itself.

It can efficiently be solved in relevant cases:

 Projecting onto an affine subspace (leads to system of linear equations, similar to least squares)

lacktriangle Projecting onto a Euclidean ball with center ${f c}$ (simply scale the vector ${f y}-{f c}$)

Projecting onto ℓ_1 -balls (needed in Lasso)

W.l.o.g. restrict to center at **0**: $B_1(R) = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_1 = \sum_{i=1}^d |x_i| \le R \}$.

Projecting onto ℓ_1 -balls (needed in Lasso)

W.l.o.g. restrict to center at **0**: $B_1(R) = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_1 = \sum_{i=1}^d |x_i| \le R \}$.

 $B_1(R)$ is the cross polytope (2d vertices, 2^d facets).

(octahedron, d=3)

Projecting onto ℓ_1 -balls (needed in Lasso)

W.l.o.g. restrict to center at **0**: $B_1(R) = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_1 = \sum_{i=1}^d |x_i| \le R \}$.

 $B_1(R)$ is the cross polytope (2d vertices, 2^d facets).

Section ??: projection can be computed in $\mathcal{O}(d \log d)$ time (can be improved to $\mathcal{O}(d)$)

(octahedron, d=3)

: [Smooth + CUX, we don't know L St+1 = 2+ - 1 (Nx) guess [<< L (use 1 1 = 21 - 1 W(24) $\int \left(x_{t+1} \right) \leq \int \left(x_{t} \right) - \frac{1}{2\mathbb{D}} \left\| y_{t} \left(x_{t} \right) \right\|_{2}^{2}$ 2/6 2 = 2 is too ladge we need to inchease I guess (2)>L (asc > progress, but could do L < 2 L,9106_1

Local $\{ (3 - \frac{1}{900}) = \frac{1}{10^{-6}} \}$ $\{ (x_{4+1}) \leq f(x_{4}) - \frac{1}{2} \| (x_{4}) \|_{2}^{2} \}$

adaption algorithms
"Adam"