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Can we go even faster?

So far: Error decreases with 1/+/T, or 1/T...

Could it decrease exponentially in 17
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Can we go even faster? D16) =2y

V(50 2
» On f(x): @Stepsize vi=1%1 (fis L=2- smooth)[)

Ti41 = Tt — f(z) = A o2 1
7\/&0 U
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Can we go even faster?
> On f(z):=a?: Stepsize v:= 1% ([ is L=2 - smooth)

1
LTi4+1 = Tt — §Vf($t) =Tt — Tt — O,

» converged in one step!
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Can we go even faster?

> On f(x):= 2?:/Stepsize v := 1 ([ is L=2 - smooth)
1 X, =

LTi4+1 = Tt — §Vf($t) =Tt — Tt — O,

<
» Same f(x) := x?: Stepsize v := @/()Q] =
Lt4+1 — Tt f(il’,'t) = AV

» converged in one step!

=
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,7%-
Can we go even faster? (l" g)

> On f(x):= 22 Stepsize y:=1 ([ |

fEt+1—fEt——Vf(a:t —xt—xt—ot J DK&) 2>?

» converged in one step!

» Same f(x) := x?: Stepsize  : —— (f |59 -

ZCt_|_1—£IZ‘t——Vf£l’Jt _.CUt——
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Can we go even faster?

» On f(x) := z°: Stepsize 7 := % (f is L=2 - smooth)

1
LTi4+1 = Tt — §Vf($t) =Tt — Tt — 0,

» converged in one step!

> Same f(z) := x?: Stepsize y:= 1 ([ is L=4 - smooth)
1 Tt Tt
Li+1 = Lt — va(iﬂt) = Lt — 9 = 9

o fla) = £ (3) = g}

» Exponential in ¢!
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Strongly convex functions

“Not too flat”

Definition
Let f: dom(f) — R be a differentiable function, X C dom(f) convex and
€ Ry, > 0. Function f is called strongly convex (with parameter ) over X if

\ ) Lf ]1 x) + V()" (y _X;}Fgllx—ylf vx,y € X
4 S~ /T . Vsl
Lemma (Exercise 21) @ Q @é ((7) 05(70) (U 3() 2 /U;L YAl

If f is strongly convex with parameter ;i > 0, then f is strictly convex and has a

unique global minimum. N .
) > s A
G At
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Strongly convex functions |l J
Strong convexity: For any x, the graph of f is above a /not too flat tangential
/

paraboloid at (x, f(x)): /
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Smooth and strongly convex functions: O(log(1/c)) steps
Want to show: lim; ., x; = xX*

Vanilla Analysis:

1
2y
Now use stronger lower bound on left hand side, coming from strong convexity:

V() (ke = x*) >

VFxe) (e = x%) = IV Fx0)|2 4 5= (Ixe = x| = [l = x7)
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Smooth and strongly convex functions: O(log(1/c)) steps

Want to show: lim; ., x; = xX*

Vanilla Analysis:

1
2y
Now use stronger lower bound on left hand side, coming from strong convexity:

V)T (ke = %) 2 Flxe) = f(x7) + S ke = x|

VFxe) (e = x%) = IV Fx0)|2 4 5= (Ixe = x| = [l = x7)

Putting it together:

f(x) — f(x) <
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Smooth and strongly convex functions: O(log(1/c)) steps

Want to show: lim; ., x; = xX*

Vanilla Analysis:

1
2
Now use stronger lower bound on left hand side, coming from strong convexity:

V)T (ke = %) 2 Flxe) = f(x7) + S ke = x|

VFxe) (e = x%) = IV Fx0)|2 4 5= (Ixe = x| = [l = x7)

Putting it together:

* 1 * * II’L *
flxe) = f(x7) < o (VUVFCeO + [ = %1% = llxepr = x*%) = S llxe = %1%,

Rewriting:

%41 —x|* <
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Smooth and strongly convex functions: O(log(1/c)) steps

Want to show: lim; ., x; = xX*

Vanilla Analysis:

1
2
Now use stronger lower bound on left hand side, coming from strong convexity:

V)T (ke = %) 2 Flxe) = f(x7) + S ke = x|

VFxe) (e = x%) = IV Fx0)|2 4 5= (Ixe = x| = [l = x7)

Putting it together:
1

Foxe) = f(x") < o= (PIVF )P+ llxe = x° = [Ixe1 = x*%) - gl\xt - x"%

=9

Rewriting:

Ixte1 = x*|* < 29(f(x") — f(xe) + VIV (xe) I + (1= py)llxe — x|
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Smooth and strongly convex functions: O(log(1/¢)) steps li

[xe41 — x| < 29(f(x*) = f(xe) + VIV P+ (1= py) [1xe — xH*.

Squared distance to x* goes down by a constant factor, up to some “noise”.
Theorem

Let f: RY — R be differentiable with a global minimum x*; suppose that f is smooth
with parameter L and strongly convex with parameter 11 > 0. Choosing v := %
gradient descent with arbitrary x satisfies the following two properties.

(i) Squared distances to x* are geometrically decreasing:

Ixeer =% 2 < (1= 5 ) e = %% 20

(ii) The absolute error after T iterations is exponentially small in T

foer) ~ f) < 5 (1-2) o =7, 7> 0.
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Smooth and strongly convex functions: O(log(1/¢)) steps IlI

%41 — X2 < 29(F(x*) = fxe)) + VIV o) P+ (1= py)llxe — 1%
Proof of (i).

Bounding the noise:

29(f(x") = f(xe)) + VIV (xe)|* =
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Smooth and strongly convex functions: O(log(1/¢)) steps IlI

[xe41 — x| < 29(f(x*) = f(xe) + VIV P+ (1= py) [1xe — xH*.

Proof of (i).
Bounding the noise: ~v = 1/L , sufficient decrease
2 1
29(F () = F) + VIV = F(F) = F6)) + IV
< () = F0x)) + 73 IV A0l

1 1
< —IVFE)IP + VG =0

Hence, the noise is nonpositive, and we get (i):

Icesr = %2 < (1= py) e = %2 = (1= 5 ) e — %1%
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Smooth and strongly convex functions: O(log(1/¢)) steps IlI

Proof of (ii).
From (i):
T
Iy =12 < (1= %) lIxo = x*]1%
Smoothness together with V f(x*) = 0:

L L
Floer) = () < V) e = %) + < e — 7|2 = S lxer — x|

Putting it together:

* L L T *
flxr) = f(x) < Slxr = %2 £ 5 (1= 2 xo — 72
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Smooth and strongly convex functions: O(log(1/¢)) steps IV

R? = ||xo — x*||°.

L 27, L T
T > —1n R— = error g—(l—&) R’ <e.
7 2¢e 2 L

Conclusion: To reach absolute error at most ¢, we only need O(log %) iterations, e.g.

> %ln(SO - R%L) iterations for error 0.01 ...
» ...as opposed to 50 - R?L in the smooth case

In Practice:
What if we don’t know the smoothness parameter L?

— (similar to) Exercise 15
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Chapter 3

Projected Gradient Descent

[tz fe - o

)
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\

Constrained Optimization Problemq %W

minimize f(x)

subject to x € X

(o

Solving Constrained Optimization Problems

A Projected Gradient Descent

B Transform it into an unconstrained problem

USC Optimization for Machine Learning CSCI-599 12/1









Constrained Optimization

Solving Constrained Optimization Problems

minimize f(x)

subject to x e X

» Here: Projected Gradient Descent
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Projected Gradient Descent
ldea: project onto X after every step: Ilx(y) := argmin,cx ||x — y||

Projected gradient descent: x;.1 :=1Ilx [xt — ’ny(Xt)}
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The Algorithm

Projected gradient descent:

Yit+1 =

Xt+1 =

for timesteps t =0, 1, ..., and stepsize v > 0.
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Properties of Projection

(i)
(i) |x = Ox(y)|I* + ly — Ox(y)|* <Ix — y|?

USC Optimization for Machine Learning CSCI-599 16/1



Properties of Projection |l

Fact
Let X C R? be closed and convex, x € X,y € RY. Then

{(i) (x —Tix(y)) T (y — Ix(y)) <0.
(

i) [[x —Ix(¥)II* + [ly — Ix (¥)I? < [x - yl*.

Proof.
(i) Ix (y) is minimizer of (differentiable) convex function dy(x) = ||x — y||* over X.

By first-order characterization of optimality (Lemma 1.28),

0 < Vdy(Ix(y) (x—Ix(y))

(&@ © (6 )" 2 (o )

2\ -l &\WCL&@J + | ~cl>> lamcll
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Properties of Projection |l T ()

Fact 0’3 N
Let X C R? be closed and convex, x € X,y € Rd Then %é"f

D T G <o
%MEX”X—HX@HQJrHy x> < lIx - ylI* Cﬁ)

Proof. J= Qﬂ’(‘*ﬂ

(i) Ix (y) is minimizer of (differentiable) convex function dy(x) = ||x — y||* over X.
By first-order characterization of optimality (Lemma 1.28),

9
lk%’V({i}

e — R
*f’vl L=

0 < @HX )T (x —IIx(y))
= OHx(y) = y) (x=1x(y))
& 0 > 2y-TIx(y)' (x—Tx(y))
& 0 > (x—Ix(y) (y - Ix(y)) )
)[;QH( : Xﬁ({?_ Sl it Pzﬁl/{Q Z kJf(ﬂr‘\)(%/”Z - ‘ (€C€|_
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Properties of Projection Il

Fact
Let X C R® be closed and convex, x € X,y € RY. Then

(i) (x—TIIx(y))' (y —IIx(y)) <0.
(il) Ix—IIx(¥)* + lly — Ox(¥)]I* < [|x — y[]*.

Proof.
(i)

By (i),

USC Optimization for Machine Learning CSCI-599 18/1



Properties of Projection Il

Fact
Let X C R® be closed and convex, x € X,y € RY. Then

(i) (x—TIIx(y))' (y —IIx(y)) <0.
(il) Ix—IIx(¥)* + lly — Ox(¥)]I* < [|x — y[]*.

Proof.
(ii)

vi=(x—-Ix(y), w:=(y—-Ix(y))
By (i),

0=2viw = [V +[w]*—[v—w|?
= |x—Ix)|* + ly - Ix (¥)II* - x - y|*
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Results for projected gradient descent over closed and convex X

N Y
The same number of steps as gradient over R?! \\ Cj\,‘, 3)0

AN
> Lipschitz convex functions over J(l/e steps \/

» Smooth convex functions over X: (’) 1/e) steps \/

» Smooth and strongly convex functions over X: O(log(1/¢)) steps

We will adapt the previous proofs for gradient descent.

BUT:
08

» Each step involves a projection onto X

» may or may not be efficient (in relevant cases, it is). .. \/
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Lipschitz convex functions over X: O(1/¢?) steps

Assume that all gradients of f are bounded in norm over closed and convex X.

» Equivalent to f being Lipschitz over X (Theorem 1.10; Exercise 12).
» Many interesting functions are Lipschitz over bounded sets X.

Theorem (same as the unconstrained one, but more useful)

Let f : RY — R be convex and differentiable, X C R® closed and convex, x* a
minimizer of f over X, furthermore, suppose that ||xo — x*|| < R with xg € X, and
that |V f(x)|| < B for all x € X. Choosing the constant stepsize

projected gradient descent yields

RB
=D fx) - f(x) £ —=. T X
: . : :(‘\ é/;\/ﬂé)
O Dcleﬂ AN 8
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Lipschitz convex functions: O(1/&?) steps Il
Proof.

» Replace x;11 in the vanilla analysis with y;11 (the unprojected gradient step):

1

gl (e =) = o= (el + e = =y — ).

> Use Fact (i) |x — Tl (y)[2 + fly — Tix (n)]? < [x — y]*
» With x = x*,y = y¢11, we have IIx(y) = X441 , and hence

a1 = T, - 08) AT 7167

R
= "X
>

N

< I - 5o, ~ X I

— + Qd— o y L A
t[l?ﬁ+~ )r'ﬁ((l — 27{3(4_ C 9(?((_1 >9T6’\j(”
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Tt

~ o~ u
Z 6()(*%5()#) (g, — 1 Y
/D Q f\%”
= () (0 < RE
| Jr

e diawmefix ( >§>
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Lipschitz convex functions: O(1/&?) steps Il
Proof.

» Replace x;11 in the vanilla analysis with y;11 (the unprojected gradient step):

1

gl (=) = o (Plleel® + e =X = flyass = x"I1).

> Use Fact (i) [|x — T (y) 2+ lly — Tx ()2 < 1x -y
» With x = x*,y = y¢11, we have IIx(y) = X441 , and hence

Ix* — %441 < |Ix* = yesall?

» We go back to the original vanilla analyis and continue from there as before:
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Lipschitz convex functions: O(1/&?) steps Il

Proof.
» Replace x;11 in the vanilla analysis with y;11 (the unprojected gradient step):
1
gl (=) = o (Plleel® + e =X = flyass = x"I1).

> Use Fact (i) [|x — T (y) 2+ lly — Tx ()2 < 1x -y
» With x = x*,y = y¢11, we have IIx(y) = X441 , and hence

Ix* — %441 < |Ix* = yesall?

» We go back to the original vanilla analyis and continue from there as before:

1
gl (=) < o (Pl + e =P = lxess = %)

USC Optimization for Machine Learning CSCI-599
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A
Smooth functions over X ( ) - éGQ(J ~ 1 I(OO(%MZ
Recall:

f is called smooth (with parameter L) over X if

F(¥) < F6)+ V500 T(y =) + 2l - y[?. Wy € X.

Wi - 2% {&CF
- :f\%( Yo

22/1
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Sufficient decrease

Lemma
Let f: RY — R be differentiable and smooth with parameter L over X. Choosing
stepsize
1
V= Z?

projected gradient descent with arbitrary xog € X satisfies

—

1 L
f(xeq1) < fxe) — ﬁHVf(xt)Hz + §||Yt+1 —x1l?, £>0.

Remark
More specifically, this already holds if f is smooth with parameter L over the line

segment connecting x; and X;41. T / /} )
— Ry = + Ao, ~ ANl
(o € G0~ 90 (Gen =20

USC Optimization for Machine Learning CSCI-599

A

23/1



Sufficient decrease ||

L
FOnn) < F0) = 5 IVFGIP + 5 llyers = Xl

Proof.

Use smoothness

USC Optimization for Machine Learning CSCI-599 24/1



Sufficient decrease ||

L
FOnn) < F0) = 5 IVFGIP + 5 llyers = Xl

Proof.

Use smoothness

Flxenn) < Flox) + V70) T (rur —x0) + 5 I — x|

USC Optimization for Machine Learning CSCI-599 24/1



Sufficient decrease ||

L
FOnn) < F0) = 5 IVFGIP + 5 llyers = Xl

Proof. oy G
Use smoothness 1{&( = j(( - Z 6 "’>
L
Fxe41) < F(xe) + VIxe) " (%1 — xe) + EHXt — X417

. L

= f(x¢) — L@ xi) ' (Xep1 — X¢) + §”Xt — X1

USC Optimization for Machine Learning CSCI-599 24/1



Sufficient decrease ||

L
FOnn) < F0) = 5 IVFGIP + 5 llyers = Xl

Proof.
Use smoothness, y;+1 — x¢ = =V f(x¢)/L
T L 9
f(xer1) < f(xe) +VF(x) (X1 —x¢) + §\|Xt — X¢11|
L
= f(Xt) — L(Yt+1 — Xt)T(Xt—i—l — Xt) + §HX7§ — X7§+1H2
L 9 9 9 L 9
= f(x¢) — 5 (H.'Yt+1 — X¢||7 F {[xe1 — %e||” = [|yerr — Xeqa ) + §||Xt — X¢q1|
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Sufficient decrease ||

1 L
f(xer1) < fxe) — iHVf(Xt)H2 + §HYt+1 — xp41]%
Proof.
Use smoothness, yi11 —x; = —Vf(x¢)/L , 2v'w = ||[v]|? + [|w|? — ||v — w]?:
T L 2
f(xi41) < f(xe) +VI(xe) (Xp41 — %) + §\|Xt — X¢11|
L

= f(Xt) — L(Yt+1 — Xt)T(Xt—i—l — Xt) + §HX7§ — X7§+1H2

_ _ £ o 2 o 2 . 2 £ B 2

= f(x¢) 5 (H.'Yt+1 X¢||* + [|xe41 — X Y1 — Xt ] )+ 2||Xt X¢ 41|

L L

— f(Xt) —

§|\Yt+1 —x¢|* + §HYt+1 — X412
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Sufficient decrease ||

L
FOnn) < F0) = 5 IVFGIP + 5 llyers = Xl

Proof.
Use smoothness, yi11 —x; = —Vf(x:) /L, 2v'w = ||[v|]? + ||[w]]? — ||v — w||?:
T L 9
f(xer1) < f(xe) +VF(x) (X1 —x¢) + §\|Xt — X¢11|
L

= f(Xt) — L(Yt+1 — Xt)T(Xt—i—l — Xt) + §HX7§ — X7§+1H2

— _ £ . 2 . 2 . 2 £ B 2

= f(x¢) 5 [yer1 — xel|” + [[xe1 — x| |yer1 — xe1]]7) + 5 1%t — X441

L L

= f(x) — 5

lyeer — xe|” + §HYt+1 — X412

= §|\Yt+1 — x|

C—

USC Optimization for Machine Learning CSCI-599 |—| 24/1



Smooth convex functions over X: O(1/¢) steps

Theorem
Let f: RY — R be convex and differentiable. Let X C R% be a closed convex set, and

assume that there is a minimizer x* of f over X, furthermore, suppose that f is
smooth over X with parameter L. Choosing stepsize

1
/y T L7
projected gradient descent yields

Ixo - x*[2, T >0.

L
f(XT)—f(X)Sﬁ

USC Optimization for Machine Learning CSCI-599 25/1



Smooth convex functions over X: O(1/¢) steps Il

L
Fxr) = f(x*) < allxo = x|, T >0,
2T
Proof.
As before, use sufficient decrease to bound sum of squared gradients in vanilla analysis:

1 L
iHVf(Xt)HQ < f(xe) = f(xu41) + §HYt+1 — X1

But now: extra term %Hytﬂ —x11||%

Compensate in the vanilla analysis itself! []

USC Optimization for Machine Learning CSCI-599 26/1



Recall: Constrained vanilla analysis

Proof.
» Replace x¢11 in the vanilla analysis with y; 11 (the unprojected gradient step):

1
g (x —x") = 2 (Y llgell® + lIxe — x*[|* = llysr — x*|1%) -

> Use Fact (i) [|x — Tx(y)[2 + ly — T ()2 < [x — yII*
With x = x*|y = y;11, we have IIx(y) = x¢41, and hence

USC Optimization for Machine Learning CSCI-599 27/1



Recall: Constrained vanilla analysis

Proof.
» Replace x¢11 in the vanilla analysis with y; 11 (the unprojected gradient step):

1
g (x —x") = 2 (Y llgell® + lIxe — x*[|* = llysr — x*|1%) -

> Use Fact (i) [|x — Tx(y)[2 + ly — T ()2 < [x — yII*
With x = x*|y = y;11, we have IIx(y) = x¢41, and hence

Ix* = xeralPHlyesr = xeall <X yeral

» We get back to the vanilla analysis. . . but with a saving!
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Recall: Constrained vanilla analysis

Proof.
» Replace x¢11 in the vanilla analysis with y; 11 (the unprojected gradient step):

1
g (x¢ —x*) = > (Vllgell” + l1xe = x*|* = llyeer — x*[1%) -

> Use Fact (i) [|x — Tx(y)[2 + ly — T ()2 < [x — yII*
With x = x*|y = y;11, we have IIx(y) = x¢41, and hence

Ix* = xeralPHlyesr = xeall <X yeral

» We get back to the vanilla analysis. . . but with a saving!

1
-
g (xe —x") < o (Vllgell” + IIxe —

*||2
2y

- ||Xt+1 — X*||2—|\Yt+1 — Xt+1||2)

USC Optimization for Machine Learning CSCI-599 27/1



Smooth convex functions over X: O(1/¢) steps Il

L

floer) = () < llxo — x| T >0
Proof.
Use f(x;) — f(x*) < g/ (x; — x*) (convexity)
T—1 T—1
D (fo) = f(x) < ) & (i —x")
t=0 t=0

USC Optimization for Machine Learning CSCI-599 28/1



Smooth convex functions over X: O(1/¢) steps Il

L

flxr) = f(x*) < o5llxo = x*|%, T>0.
Proof.
Use f(x¢) — f(x*) < g, (xy —x*) (convexity), vanilla analysis with saving, v =1/L
T—1 T-1
D (fo) = f(x) < ) & (i —x")
t=0 t=0
T—1 T—1
1 , L L
< - ox12 . 2.
< 57 X Il gl =< = 5 3 Iy x|

USC Optimization for Machine Learning CSCI-599
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Smooth convex functions over X: O(1/¢) steps Il

L
flxr) = f(x*) < o5llxo = x*|%, T>0.
Proof
Use f(x¢) — f(x*) < g, (xy —x*) (convexity), vanilla analysis with saving, v =1/L
T—1 T-1
D (fo) = f(x) < ) & (i —x")
t=0 t=0
T—1 T—1
1 , L L
< T - T 2 - o 2.
< 57 X Il gl =< = 5 3 Iy x|

Use sufficient decrease to bound 5~ o leell? by

USC Optimization for Machine Learning CSCI-599
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Smooth convex functions over X: O(1/¢) steps Il

L
flxr) = f(x*) < o=lxo = x*|%, T >0.
2T
Proof
Use f(x¢) — f(x*) < g, (xy —x*) (convexity), vanilla analysis with saving, v =1/L
T—1 T—1
D (fo) = f(x) < ) & (i —x")
t=0 t=0
| Tl 7 T-1
< o7 D llelf+ —||X -x* - Z Iyert — x|
t=0 t=0

Use sufficient decrease to bound 5~ o leell? by

— L
Z ( f(xeg1) + §HYt+1 - Xt+1”2>

t=0

USC Optimization for Machine Learning CSCI-599

28/1



Smooth convex functions over X: O(1/¢) steps Il

L
flxr) = f(x*) < o=lxo = x*|%, T >0.
2T
Proof
Use f(x¢) — f(x*) < g, (xy —x*) (convexity), vanilla analysis with saving, v =1/L
T—1 T—1
D (fo) = f(x) < ) & (i —x")
t=0 t=0
| Tl 7 T-1
< o7 D llelf+ —HX -x* - Z Iyert — x|
t=0 t=0

Use sufficient decrease to bound 5~ o leell? by

_ T-1
L L
E ( f(xe41) + §HYt+1 — Xt+1”2> = f(XO)—f(XT)+§ E Nyerr — x|

USC Optimization for Machine Learning CSCI-599

[] 28/1



Smooth convex functions over X: O(1/¢) steps Il

L
flxr) = f(x*) < o=lxo = x*|%, T >0.
2T
Proof
Use f(x¢) — f(x*) < g, (xy —x*) (convexity), vanilla analysis with saving, v =1/L
T—1 T—1
D (fo) = f(x) < ) & (i —x")
t=0 t=0
| Tl 7 T-1
< o7 D llelf+ —HX -x* - Z Iyert — x|
t=0 t=0

Use sufficient decrease to bound -  leell? by

_ 7 71
L
E ( f(xes1) + §\|Yt+1 — Xt+1||2) = f(x0)—f(x7) + E lyes: — xea1].

t=0
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Smooth convex functions over X: O(1/¢) steps IV

L
flxr) = f() < ollxo — x|, T > 0.
Proof.
Putting it together: extra terms cancel, and as in unconstrained case, we get
d L
D (flxe) = f(x1) < 5 [0 = x|
t=1

Exercise ?7: again, we make progress in every step (not immediate from sufficient
decrease here). Hence,

T
floer) — Jx") < %Ezj (Fx) = F(x) < oo — x|
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Smooth and strongly convex functions over X

Recall:

f is strongly convex (with parameter p) over X if

fly) > f(x) ‘|'Vf(X)T(y —X) + g”x—yHQ, Vx,y € X.
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Smooth and strongly convex functions over X

Exercise ??: a strongly convex function has a unique minimizer x* of f over X.

We prove that projected gradient descent converges to x*.
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Smooth and strongly convex functions over X: O(log(1/c)) steps
Theorem
Let f:R* — R be convex and differentiable. Let X C R be a nonempty closed and
convex set and suppose that f is smooth over X with parameter L. and strongly

convex over X with parameter 11 > 0. Choosing v := % projected gradient descent
with arbitrary X satisfies the following two properties.

1) Squared distances to x* are geometrically decreasing:
q g y g

Ixerr =2 < (1= 5) Il =x*1% =0,

(ii) The absolute error after T' iterations is exponentially small in T':

Foer) — F6e) < IVAG (1) o — ')

L T
+ 5(1—%) |xg — x*||?, T > 0.
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Smooth and strongly convex functions over X: O(log(1/c)) steps
Theorem
Let f:R* — R be convex and differentiable. Let X C R be a nonempty closed and
convex set and suppose that f is smooth over X with parameter L. and strongly

convex over X with parameter 11 > 0. Choosing v := % projected gradient descent
with arbitrary X satisfies the following two properties.

1) Squared distances to x* are geometrically decreasing:
q g y g

Ixerr =2 < (1= 5) Il =x*1% =0,

(ii) The absolute error after T' iterations is exponentially small in T':

/
fler) = f) < VA6 (1~ %)T “lxo—x*|| < in general, Vf(x*) # 0!

L H T *||2 ; 1
+ 5 (1 — Z) |xo — x*||*, T > 0. < as in unconstrained case
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Smooth and strongly convex functions over X: O(log(1/¢)) steps |

Proof.

(i) Geometric decrease plus noise: ||x;11 — x*||* < - --

» unconstrained case:

29(f(x*) = f(x0)) + IV f (x)]1” + (1= ) llxe — x**.

» constrained case (vanilla analysis with a saving):

29(f(x*) = f(xe)) + VIV F ) = lyerr — xeal” + (1 — py) [xe — x|
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il

Proof.

To bound the noise, we use sufficient decrease.

» unconstrained case:

1
f(xeq1) < Fxe) — ﬁ”vf(xt)HQ , t=0.
» constrained case:

1 L
f(xe1) < fxe) — EHVJC(XHH2 + §||Yt+1 —x¢1l, £>0.

Putting it together, the terms ||y;+1 — x¢,1||? cancel, and we get
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il

Proof.

To bound the noise, we use sufficient decrease.

» unconstrained case:

1
f(xeq1) < Fxe) — ﬁ”vf(xt)HQ , t=0.
» constrained case:

1 L
f(xe1) < fxe) — EHVJC(XHH2 + §||Yt+1 —x¢1l, £>0.

Putting it together, the terms ||y;+1 — x¢,1||? cancel, and we get

Icesr = %2 < (1= py) e = %2 = (1= 5 ) e — x|

In both cases. []
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Smooth and strongly convex functions over X: O(log(1/¢)) steps I

Proof.

(ii) Error bound from smoothness:

L
fxr) = f(x*) < VF(x")' (xr —x) + 5l = xr||”
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il

Proof.
(ii) Error bound from smoothness:
* *\ T * L * 2
flxr) = f(x7) <= Vi) (xr —x7) + S lx" —x7
L

< |IVF) ||xr —x*|| + §HX* — XT”2 (Cauchy-Schwarz)
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il

Proof.
(ii) Error bound from smoothness:

* *\ T * L * 2
flxr) = f(x7) <= Vi) (xr —x7) + S lx" —x7

L
< |[IVf) [|xr —x*|| + §HX* — x7|* (Cauchy-Schwarz)
* H T/2 * L H T *[12
< _ = _ “ (1 £ _
< Ve (1-5) ko —x I+ S (1= %) lIxo = 1. )

constrained error bound ~ v unconstrained error bound

required number of steps roughly doubles.
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The Projection Step: Ilx(y) := argmin, y ||x — y||
Computing IIx (y) is an optimization problem itself.

A\ When  do we e B consflenn

Q) (o A F %Qie I O“%B cor 3&(@,}/\% ?

P
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The Projection Step: Ilx(y) := argmin, y ||x — y||

Computing IIx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:
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The Projection Step: Ilx(y) := argmin,_y |[|x — ¥|

Computing IIx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:

» Projecting onto an affine subspace (leads to system of linear equations, similar to
least squares)
*y

x(y)
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The Projection Step: Ilx(y) := argmin,_y |[|x — ¥|

Computing IIx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:

» Projecting onto an affine subspace (leads to system of linear equations, similar to
least squares)
*y

x(y) %

» Projecting onto a Euclidean ball with center ¢ (simply scale the vector y — c)

‘ 11 X /(3 5 ( C)
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Projecting onto /;-balls (needed in Lasso)

W.l.0.g. restrict to center at 0: B1(R) = {x € R?: ||x||; = 2?21 lz;| < R}.

X = By(R)
o =l &K
. IL(v) d
& 0
\V,

OJJ‘Y;\Um {w— )\7_[/ SQ
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Projecting onto /;-balls (needed in Lasso)

W.l.o.g. restrict to center at 0: Bi(R) = {x € R?: ||x||; = 2?21 lz;| < R}.

X = Bi(R)

Bi(R) is the cross polytope (2d vertices, 2¢ facets). (octahedron, d = 3)
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Projecting onto /;-balls (needed in Lasso)

W.l.o.g. restrict to center at 0: Bi(R) = {x € R?: ||x||; = 2?21 lz;| < R}.

X = Bi(R)

y (octahedron, d = 3)

me (can be improved to O(d))

Bi1(R) is the cross polytope (2d vertices, 2¢ facets).

Section ??: projection can be computed i
proj P
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