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Can we go even faster?

So far: Error decreases with 1/v/T, or 1/T...

Could it decrease exponentially in T7
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Can we go even faster?

> On f(z) := 2% Stepsize v := 5 (f is L=2 - smooth)

1
Ti41 = Tt — §Vf(l‘t) =
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Can we go even faster?

» On f(x):= % Stepsize v :

Ti41 =

» converged in one step!
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3 (fis L=2 - smooth)

1
Tt — §Vf(:13t) = Tt — T = 0,



Can we go even faster?

> On f(z) := 2% Stepsize v := 5 (f is L=2 - smooth)

1
Tt41 = Tt — §Vf(l‘t) =Tt — Tt = 0,

» converged in one step!

> Same f(z) := 2?: Stepsize v := 1 (fis L=4 - smooth)

1
Ti41 = Tt — va(l‘t) =
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Can we go even faster?

> On f(z) := 2% Stepsize v := 5 (f is L=2 - smooth)

1
Tt41 = Tt — §Vf(l‘t) =Tt — Tt = 0,
» converged in one step!
> Same f(z) := 2?: Stepsize v := 1 (fis L=4 - smooth)

X X
Li+1 Zth—ZVf(l‘t) :xt—é = 51&’

so f(zt) =
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Can we go even faster?

> On f(z) := 2% Stepsize v := 5 (f is L=2 - smooth)

Tt41 = Tt — §Vf(l‘t) =Tt — Tt = 0,
» converged in one step!
> Same f(z) := 2?: Stepsize v := 1 (fis L=4 - smooth)

X X
Li+1 Zﬂit—ZVf(l‘t) :xt—é = 52

so f(z) = f (%) = %x%

» Exponential in t !
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Strongly convex functions

“Not too flat”

Definition
Let f: dom(f) — R be a differentiable function, X C dom(f) convex and
€ Ry, > 0. Function f is called strongly convex (with parameter 1) over X if

F3) 2 £ + VI Ty =) + Sllx -y’ ¥xy € X,

Lemma (Exercise 21)

If f is strongly convex with parameter . > 0, then f is strictly convex and has a
unique global minimum.
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Strongly convex functions Il /
Strong convexity: For any x, the graph of f is above a /not too flat tangential
/

paraboloid at (x, f(x)): /
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Smooth and strongly convex functions: O(log(1/¢)) steps

Want to show: lim;_,oo X; = xX*

Vanilla Analysis:
¥ 1
V) (= x5) = IV * + > (Ixe = x*[1% = llxe1 —x*[|?)
Now use stronger lower bound on left hand side, coming from strong convexity:

VFxe) " (xe = x*) 2
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Smooth and strongly convex functions: O(log(1/¢c)) steps

Want to show: lim;_,oo X; = xX*

Vanilla Analysis:

* r’y 1 * *
VIxe)" (% —x*) = §||Vf(><t)H2 o (Ixe = x*[1% = llxe1 —x*[|?)

Now use stronger lower bound on left hand side, coming from strong convexity:

V) (ke = %) = fxi) = Fx) + 8 = x|

Putting it together:

flx) = f(x") <
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Smooth and strongly convex functions: O(log(1/¢c)) steps

Want to show: lim;_,oo X; = xX*

Vanilla Analysis:
V) (= %) = A6 + 5 (e =2 = s =)
Now use stronger lower bound on left hand side, coming from strong convexity:
V) (ke = %) = fxi) = Fx) + 8 = x|
Putting it together:

1
flx) = f(x) < > (VIVF I + lxe = |17 = e = x*|) = gHXt - <%

Rewriting:

%41 — x*|| <
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Smooth and strongly convex functions: O(log(1/¢c)) steps

Want to show: lim;_,oo X; = xX*

Vanilla Analysis:
V) (= %) = A6 + 5 (e =2 = s =)
Now use stronger lower bound on left hand side, coming from strong convexity:
V) (ke = %) = fxi) = Fx) + 8 = x|
Putting it together:

1
flx) = f(x") < > (VIVF I + lxe = |17 = e = x*|) = gHXt - <%

Rewriting:

e+t = x*|* < 29(f(x") = F(xe)) + V2NV ()P + (1 = py) e — x|
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Smooth and strongly convex functions: O(log(1/¢<)) steps Il

e+t — 3|2 < 29(f(x") = F(xe)) + VNV (o)lI” + (1= py) e — x|

Squared distance to x* goes down by a constant factor, up to some *
Theorem

‘noise” .

Let f : RY — R be differentiable with a global minimum x*; suppose that f is smooth
with parameter L and strongly convex with parameter 1 > 0. Choosing v := +
gradient descent with arbitrary xq satisfies the following two properties.

L ’
(i) Squared distances to x* are geometrically decreasing:
Ierr =2 < (1= 2) e =2, 22 0.

(ii) The absolute error after T iterations is exponentially small in T':

flxr) — f(x*) < g (1 - %)T Ixo — x*|2, T > 0.
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Smooth and strongly convex functions: O(log(1/<)) steps Il

e+t — 3|2 < 29(f(x") = F(xe)) + VNV (o)lI” + (1= py) e — x|
Proof of (i).

Bounding the noise:

29(f(x*) = f(x¢)) + ’YQHVf(Xt)HQ _
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Smooth and strongly convex functions: O(log(1/¢c)) steps IlI

e+t — 3|2 < 29(f(x") = F(xe)) + VNV (o)lI” + (1= py) e — x|

Proof of (i).

Bounding the noise: ~ = 1/L , sufficient decrease

N(F) ~ F) +PIVIGI? = F(F) ~ Fox) + 5 IV S0

2

2 (Fxarn) — F6) + 251V I )P

1 1
< —SIVFE)IE+ LIV I =0,

IN

Hence, the noise is nonpositive, and we get (i):

e =2 < (1= ) e =42 = (1= £) e = x|
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Smooth and strongly convex functions: O(log(1/¢c)) steps IlI

Proof of (ii).
From (i):
T
Ir =12 < (1= 2) " flxo — x|
Smoothness together with V f(x*) = 0:

Floer) = F) < VI T e —x) + 5 e — 2 = & er x|

Putting it together:

L L T
fxr) = fix) < Slixe —x* P < 5 (1= 2) lxo = x|
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Smooth and strongly convex functions: O(log(1/¢)) steps IV

R? = ||xo — x*||2.

L R’L L T
T>—1In <> = error S—(l—ﬁ) R2§5.
7 2e 2

Conclusion: To reach absolute error at most €, we only need O(log %) iterations, e.g.

> %1n(50 - R%L) iterations for error 0.01 ...
» .. .as opposed to 50 - R2L in the smooth case

In Practice:
What if we don't know the smoothness parameter L7

— (similar to) Exercise 15
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Chapter 3

Projected Gradient Descent
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Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to xeX

Solving Constrained Optimization Problems

A Projected Gradient Descent

B Transform it into an unconstrained problem
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Constrained Optimization

Solving Constrained Optimization Problems

minimize f(x)

subject to xeX

» Here: Projected Gradient Descent
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Projected Gradient Descent
Idea: project onto X after every step: Ilx(y) := argmin,x |[|x — y||

Projected gradient descent: x;y1 :=1lx [xt — nyf(xt)]
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The Algorithm

Projected gradient descent:

yir1 = X — YV f(x),
Xep1 = Hx(yee1) == argmin ||x — v 1]
xeX
for timesteps t =0, 1,..., and stepsize v > 0.
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Properties of Projection
Fact
Let X C R? be closed and convex, x € X,y € R%. Then
() (x—TIIx(y)) " (y — Ox(y)) < 0.
(i) lx =Hx W[+ ly = Ox(¥)[* < [[x — y[*

y
o a>90°
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Properties of Projection Il

Fact
Let X C RY be closed and convex, x € X,y € R%. Then

() (x—Ix(y)) " (y —Ix(y)) <0.
(i) lx = x (I + ly — Ox (¥)]* < [[x — y >

Proof.

(i) IIx(y) is minimizer of (differentiable) convex function dy (x) = ||x — y||? over X.

By first-order characterization of optimality (Lemma 1.28),

0 < Vdy(Iix(y)) " (x — x(y))
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Properties of Projection Il

Fact
Let X C RY be closed and convex, x € X,y € R%. Then

() (x—Ix(y)) " (y —Ix(y)) <0.
(i) lx = x (I + ly — Ox (¥)]* < [[x — y >

Proof.
(i) IIx(y) is minimizer of (differentiable) convex function dy (x) = ||x — y||? over X.
By first-order characterization of optimality (Lemma 1.28),

0 < Vdy(IIx(y)) " (x — Ix(y))

= 2( x(y)—y) (x = IIx(y))

& 0 > 2y-TIx(y) ' (x—Ix(y))
& 0 > (x—Ix(y) (y - Ix(y))
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Properties of Projection |1l

Fact
Let X C R? be closed and convex, x € X,y € R%. Then

() (x—Ix(y)) " (y —Ix(y)) <0.
(i) [lx = IIx (I + [ly — Ix ()] < [x — y*.

Proof.
(i)

vi=(x—1IIx(y)), w:=(y-Ix(y)).
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Properties of Projection |1l

Fact
Let X C R? be closed and convex, x € X,y € R%. Then

() (x—Ix(y)) " (y —Ix(y)) <0.
(i) [lx = IIx (I + [ly — Ix ()] < [x — y*.

Proof
(if)
vi= (x—Ix(y), wi=(y—IL(y)).
By (i),
0>2viw = [[v|*+[w|*—[lv—w]|?
= |x=IxI* + lly —Ix(y)|* = x—yl*
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Results for projected gradient descent over closed and convex X

The same number of steps as gradient over R

» Lipschitz convex functions over X: O(1/£?) steps
» Smooth convex functions over X: O(1/¢) steps
» Smooth and strongly convex functions over X: O(log(1/¢)) steps

We will adapt the previous proofs for gradient descent.
BUT:

» Each step involves a projection onto X
» may or may not be efficient (in relevant cases, it is). ..
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Lipschitz convex functions over X: O(1/¢?) steps
Assume that all gradients of f are bounded in norm over closed and convex X.

» Equivalent to f being Lipschitz over X (Theorem 1.10; Exercise 12).
» Many interesting functions are Lipschitz over bounded sets X.
Theorem (same as the unconstrained one, but more useful)

Let f: R?% — R be convex and differentiable, X C R< closed and convex, x* a
minimizer of f over X furthermore, suppose that ||xo — x*|| < R with xo € X, and
that ||V f(x)|| < B for all x € X. Choosing the constant stepsize

projected gradient descent yields

S

1 T-1
7O Sxe) — fx) <
t=0
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Lipschitz convex functions: O(1/¢?) steps Il
Proof.

» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):

1
87 (o = x) = o (el + e = I =y =X IP)

> Use Fact (ii):  [lx — TLx(y)[I” + ly — TIx (¥)1I* < [Ix -y
» With x = x*,y = y¢+1, we have IIx(y) = x¢+1 , and hence
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Lipschitz convex functions: O(1/¢?) steps Il
Proof.

» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):

1
87 (o = x) = o (el + e = I =y =X IP)

> Use Fact (ii):  [lx — TLx(y)[I” + ly — TIx (¥)1I* < [Ix -y
» With x = x*,y = y¢+1, we have IIx(y) = x¢+1 , and hence

" = x4 < [lx* =y |®

> We go back to the original vanilla analyis and continue from there as before:
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Lipschitz convex functions: O(1/¢?) steps Il
Proof.

» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):
1
87 (o = x) = o (el + e = I =y =X IP)

> Use Fact (ii):  [lx — TLx(y)[I” + ly — TIx (¥)1I* < [Ix -y
» With x = x*,y = y¢+1, we have IIx(y) = x¢+1 , and hence

" = x4 < [lx* =y |®

> We go back to the original vanilla analyis and continue from there as before:

1
gl (xi—x*) < o= (Ve

2
5 (7l

*||2

I = %2 = e = x°I17) -
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Smooth functions over X

Recall:

f is called smooth (with parameter L) over X if

F9) < F6)+ 95Ty )+ 5k - yl% Wy e X,
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Sufficient decrease

Lemma
Let f : RY — R be differentiable and smooth with parameter L over X. Choosing
stepsize
1
V= L’

projected gradient descent with arbitrary xg € X satisfies

1 L
J(xer1) < f(xe) — ﬁ”vf(xt)ﬂ2 + §HYt+1 — x4, t>0.

Remark
More specifically, this already holds if f is smooth with parameter L over the line

segment connecting x; and X;y1.
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Sufficient decrease |l

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.

Use smoothness

USC Optimization for Machine Learning CSCI-599

24/1



Sufficient decrease |l

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.

Use smoothness

Fxi1) < Fx) + V)T (xe1 — %) + gHXt — x|
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Sufficient decrease |l

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.

Use smoothness

Fxi1) < Fx) + V)T (xe1 — %) + gHXt — x|

L
= f(x¢) — L(yer1 — %) (%41 — X¢) + §||Xt — %112
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Sufficient decrease ||

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.
Use smoothness, y;+1 —x¢ = —V f(x¢)/L

L
Fxer1) < flxe) + V) (Xep1 — xe) + EHXt —x¢41)?
L
= f(x¢) = L(yes1 —x¢) T (%e1 — %) + o Il — Xe 41

:f(xt)—§

USC Optimization for Machine Learning CSCI-599
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Sufficient decrease ||

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.

Use smoothness, yi 11 —x; = —Vf(x¢)/L , 2v'w = |[v||? + |[w]]? — |[|[v — w|*:
T L 2
f(xep1) < f(xe) + Vf(xe) (%41 — %) + §th — X¢p1|
L
= f(xt) = L(yit1 — x¢) T (X1 — X4) + §||Xt —x41)?
L 2 2 o , L 2
= f(x) — 3 (lysr1 = xell® 4+ Ixes1 = x4l = [lyeer — xe41l%) + §\|Xt — X1

L L
= f(x¢) — EH}’tH - Xt”2 + §||Yt+1 — Xt+1||2
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Sufficient decrease ||

L
FOxest) < S0 = 5T IV A+ 5 lyes = x|

Proof.

Use smoothness, yi 11 —x; = —Vf(x¢)/L , 2v'w = |[v||? + |[w]]? — |[|[v — w|*:

L
F(xig) < Fx0) + VF(xe) T (x40 — x0) + 3 llxe = e
L

= f(xt) = Ly — %) (%41 — x0) + o Il — Xi 1|

L 2 2 2 L 2
= Sx) = (Iyeer =l + xes =il = oo = xea]?) + Gl = x|

L L
= f(xt) = Sy =xil* + S lyess = x|

L
= f(xe) = *IIVf(Xt)HZ + 5 Iy = x|
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Smooth convex functions over X: O(1/¢) steps

Theorem

Let f: R? — R be convex and differentiable. Let X C R? be a closed convex set, and
assume that there is a minimizer x* of f over X, furthermore, suppose that f is
smooth over X with parameter L. Choosing stepsize

1
’7 T L,
projected gradient descent yields

flxr) = [(x") < gllxo = x*[P, T > 0.

USC Optimization for Machine Learning CSCI-599
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Smooth convex functions over X: O(1/¢) steps Il

fer) = FO) < glixo ~ I, T >0,

Proof.

As before, use sufficient decrease to bound sum of squared gradients in vanilla analysis:
S IVFEIT < fxe) = fxea1) + S llyear = xera]

But now: extra term &|ly;41 — x¢41|%

Compensate in the vanilla analysis itself!
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Recall: Constrained vanilla analysis
Proof.
» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):

1
g/ (xy —x*) = 2 (Vllgell® + llxe — x*[1 = [lyse1 — x*[1?) -

> Use Fact (ii):  [lx —Tx(y)[* + [ly = Tx(¥)[]* < [Ix — y*.
With x = x*,y = y¢+1, we have IIx(y) = x;+1, and hence
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Recall: Constrained vanilla analysis
Proof.
» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):

1
g/ (xy —x*) = 2 (Vllgell® + llxe — x*[1 = [lyse1 — x*[1?) -

> Use Fact (ii):  [lx —Tx(y)[* + [ly = Tx(¥)[]* < [Ix — y*.
With x = x*,y = y¢+1, we have IIx(y) = x;+1, and hence

" = e+ llyers = xeral® <% = yel?

> We get back to the vanilla analysis. .. but with a saving!
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Recall: Constrained vanilla analysis
Proof.
» Replace x;41 in the vanilla analysis with y;11 (the unprojected gradient step):

1
= o= (Pllgel® + lIxe = x** = llyea — x*[|?) -

T R
g (Xt X ) 27

> Use Fact (ii):  [lx —Tx(y)[* + [ly = Tx(¥)[]* < [Ix — y*.
With x = x*,y = y¢+1, we have IIx(y) = x;+1, and hence

1% = xe | Hlyern = xea]? <X — yen |
> We get back to the vanilla analysis. .. but with a saving!
*HQ

1
g/ (xy —x*) < 2 (7 llgell” + llx¢ — — IIxes1 = X2 = llyes1 — Xt+1”2)
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Smooth convex functions over X: O(1/¢) steps Il

Fxr) — F(x) < Zllxo - x*2, T > 0.

2T
Proof.
Use f(x;) — f(x*) < g/ (x¢ — x*) (convexity)
T-1 T-1
Do(flx) = () < Yo e (xe —x7)
t=0 t=0
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Smooth convex functions over X: O(1/¢) steps Il

Fr) — () < ko — X*[2, T >0,

- 2T

Proof.
Use f(x;) — f(x*) < g/ (x4 — x*) (convexity), vanilla analysis with saving, v = 1/L:

T—1 T—1

D o(fl) = () < Yo e (ke —x7)

t=0 t=0

T—1
< >l + Flxo =2 =5 3 s = sl
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Smooth convex functions over X: O(1/¢) steps Il

L
—|xo —x*||>, T >0.

flxr) = f(x") <

- 2T

Proof.
Use f(x;) — f(x*) < g/ (x4 — x*) (convexity), vanilla analysis with saving, v = 1/L:

T—1 T—1

D o(fl) = () < Yo e (ke —x7)

t=0 t=0

T—1
< >l + Flxo =2 =5 3 s = sl

Use sufficient decrease to bound 57 Z Ullgel|? by
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Smooth convex functions over X: O(1/¢) steps Il

flxr) = f(x") <

—|xo —x*||>, T >0.

- 2T

Proof.
Use f(x;) — f(x*) < g/ (x4 — x*) (convexity), vanilla analysis with saving, v = 1/L:

T—1 T—1

D o(fl) = () < Yo e (ke —x7)

t=0 t=0

T—1
< >l + Flxo =2 =5 3 s = sl

Use sufficient decrease to bound 57 Z Ullgel|? by
T-1

S (#6000 = f0xee0) + G i — e P

t=0
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Smooth convex functions over X: O(1/¢) steps Il

Fxr) — F(x) < ko - X*[% T >0.

- 2T

Proof.
Use f(x;) — f(x*) < g/ (x4 — x*) (convexity), vanilla analysis with saving, v = 1/L:

T-1 T-1

D o(fl) = () < Yo e (ke —x7)

t=0 t=0

T-1
< o2l Flxo =2 =5 3 s = sl

Use sufficient decrease to bound i Z;Bl lg:ll? by
T-1 I =
Z (f(Xt) — f(xt1) + §‘|}’t+1 - Xt+1”2> f(x0)— +§ Iyee1 — xe ]
t=0 t=0
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Smooth convex functions over X: O(1/¢) steps Il

L
—|xo —x*||>, T >0.

flxr) = f(x") <

- 2T

Proof.
Use f(x;) — f(x*) < g/ (x4 — x*) (convexity), vanilla analysis with saving, v = 1/L:

T—1 T—1

D o(fl) = () < Yo e (ke —x7)

t=0 t=0

T—1
< >l + Flxo =2 =5 3 s = sl

Use sufficient decrease to bound i tT:_ol g l|? by

T-1 I Tt
Z (f(Xt) — f(xe1) + §HYt+1 - Xt+1||2> f(x0)— +§ lyt+1 — Xt+1H2-
t=0 t=0
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Smooth convex functions over X: O(1/¢) steps IV

flxr) — f(x*) < QLTHXO —x*|?, T >0.

Proof.

Putting it together: extra terms cancel, and as in unconstrained case, we get
d L
D (flx) = f(x) < 5 [P0 —x*|1%.
t=1

Exercise 7?: again, we make progress in every step (not immediate from sufficient
decrease here). Hence,

T
Floxr) = 1) < 0 D2 (Fse) = FO)) < ol —

t=1
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Smooth and strongly convex functions over X

Recall:

f is strongly convex (with parameter ) over X if

F3) 2 f00) + V) Ty =x) + Sl -y’ vxyex.

USC Optimization for Machine Learning CSCI-599
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Smooth and strongly convex functions over X

Exercise 77?: a strongly convex function has a unique minimizer x* of f over X.

We prove that projected gradient descent converges to x*.

USC Optimization for Machine Learning CSCI-599
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Smooth and strongly convex functions over X: O(log(1/¢c)) steps
Theorem
Let f : R — R be convex and differentiable. Let X C R% be a nonempty closed and
convex set and suppose that f is smooth over X with parameter L and strongly

convex over X with parameter i > 0. Choosing v := % projected gradient descent
with arbitrary xg satisfies the following two properties.

(i) Squared distances to x* are geometrically decreasing:
e =2 < (1= 2) e =2, 22 0.

(ii) The absolute error after T iterations is exponentially small in T':

flr) — 1) < 196 (1 2) 7 o — x|

L T
+ 5(1—%) xo —x*||?, T >0.

USC Optimization for Machine Learning CSCI-599



Smooth and strongly convex functions over X: O(log(1/¢c)) steps
Theorem
Let f : R — R be convex and differentiable. Let X C R% be a nonempty closed and
convex set and suppose that f is smooth over X with parameter L and strongly

convex over X with parameter i > 0. Choosing v := % projected gradient descent
with arbitrary xg satisfies the following two properties.

(i) Squared distances to x* are geometrically decreasing:
e =2 < (1= 2) e =2, 22 0.

(ii) The absolute error after T iterations is exponentially small in T':

* * /“L T/2 * H
For) = ) < IVFE)I(1=5) ko= x| < in general, Vf(x*) £ 0!

L H T * (|2 ; H
+ 5 (1 = f) llxo —x*[|*, T > 0. < as in unconstrained case
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Smooth and strongly convex functions over X: O(log(1/¢)) steps |

Proof.

(i) Geometric decrease plus noise: ||xz41 — x*||2 < ---

» unconstrained case:

2y(f(x*) = f(x0)) + V[V f (1) + (1 — py)llxe — x|

» constrained case (vanilla analysis with a saving):

2y(f(x*) = f(x2)) + PNV G? = yerr = xesn | + (1= ) [1xe — x|
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il
Proof.

To bound the noise, we use sufficient decrease.

» unconstrained case:

Fxea) < Jx0) = o7 VA0 iz0

» constrained case:
f(xir1) < f(xe) — EHW(Xt)II + §||Yt+1 —x441]]7, t2>0.

Putting it together, the terms ||y;+1 — X;11||> cancel, and we get
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Smooth and strongly convex functions over X: O(log(1/¢)) steps Il
Proof.

To bound the noise, we use sufficient decrease.

» unconstrained case:

Fxea) < Jx0) = o7 VA0 iz0

> constrained case:
1 o L 2
f(xe41) < fxe) — EHVf(Xt)H + §||Yt+l —x¢+1]|7, t>0.
Putting it together, the terms ||y;+1 — X;11||> cancel, and we get

e =12 < (1= ) =52 = (1= 2 ) 1 =72

in both cases. O
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Smooth and strongly convex functions over X: O(log(1/¢)) stepsllI

Proof.

(i) Error bound from smoothness:

Fler) = 1) < VG (xr —x) + 5 I — x|
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Smooth and strongly convex functions over X: O(log(1/¢)) stepsllI

Proof.

(i) Error bound from smoothness:

f(xr) = f(x7)

IN

L
V)T (xr —x*) + Slx" = x|

IN

L
IV f(x)| ||xr — x| + E”X* — XT||2 (Cauchy-Schwarz)
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Smooth and strongly convex functions over X: O(log(1/¢)) stepslI

Proof.

(i) Error bound from smoothness:

L
flxr) = f(x) < V) (e = %) + S lx" = xr?
L
< |\IVFE)| 1xr — x| + §HX* — XTH2 (Cauchy-Schwarz)
* _k T/2 o* £ K T o *12 [
< IVFE(1=5) Tlxo—xt 1+ 5 (1= 2) lxo —x*I- ()

O

constrained error bound &~ v/unconstrained error bound

required number of steps roughly doubles.
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The Projection Step: Ilx(y) := argmin, y [|x — y||

Computing ITx (y) is an optimization problem itself.
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The Projection Step: Ilx(y) := argmin, y [|x — y||
Computing ITx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:
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The Projection Step: Ilx(y) := argmin, y [|x — y||
Computing ITx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:

» Projecting onto an affine subspace (leads to system of linear equations, similar to
least squares)
oy

x(y)
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The Projection Step: Ilx(y) := argmin, y [|x — y||
Computing ITx (y) is an optimization problem itself.

It can efficiently be solved in relevant cases:

» Projecting onto an affine subspace (leads to system of linear equations, similar to
least squares)
oy

x(y) ¥

» Projecting onto a Euclidean ball with center ¢ (simply scale the vector y — c)

%y
/HX(Y)

USC Optimization for Machine Learning CSCI-599 36/1



Projecting onto /;-balls (needed in Lasso)

W.l.o.g. restrict to center at 0: B1(R) = {x € R¢: ||x||; = 2?21 |z;| < R}.

X = Bi(R)

\4
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Projecting onto /;-balls (needed in Lasso)

W.l.0.g. restrict to center at 0: Bi(R) = {x € R?: ||x||; = 2%, |zi| < R}.

B1(R) is the cross polytope (2d vertices, 2¢ facets).
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X = By(R)

\4

Hx(V)

(octahedron, d = 3)
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Projecting onto /;-balls (needed in Lasso)

W.l.0.g. restrict to center at 0: Bi(R) = {x € R?: ||x||; = 2%, |zi| < R}.

X = By(R)

\4

Hx(V)

B1(R) is the cross polytope (2d vertices, 2¢ facets). (octahedron, d = 3)

Section ?7: projection can be computed in O(dlogd) time (can be improved to O(d))
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