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Convergence in O(1/") steps

Same as vanilla case for smooth functions, but now for any h for which we can compute

the proximal mapping.
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Subgradients

What if f is not di↵erentiable?

Definition
g 2 Rd is a subgradient of f at x if

f(y) � f(x) + g>(y � x) for all y 2 dom(f)

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) � f(x) + g
T (y � x) for all y

(�� (g,�1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x � x1)

f(x2) + gT
2 (x � x2)

f(x2) + gT
3 (x � x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

@f(x) ✓ Rd is the subdi↵erential, the set of subgradients of f at x.
USC Optimization for Machine Learning CSCI-599 8/1



Subgradients II

Example:

f(x) = |x|

0

f(y) � gy

y 7! 1
5y

y 7! �2
5y

Subgradient condition at x = 0:

f(y) � f(0) + g(y � 0) = gy.

@f(0) = [�1, 1]
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Subgradients III

Lemma (Exercise 28)

If f : dom(f) ! R is di↵erentiable at x 2 dom(f), then @f(x) ✓ {rf(x)}.

Either exactly one subgradient rf(x). . .

x y

f(y)

f(x) +rf(x)>(y � x)

. . . or no subgradient at all.
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Subgradient characterization of convexity

“convex = subgradients everywhere”

Lemma (Exercise 29)

A function f : dom(f) ! R is convex if and only if dom(f) is convex and @f(x) 6= ;

for all x 2 dom(f).

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) � f(x) + g
T (y � x) for all y

(�� (g,�1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x � x1)

f(x2) + gT
2 (x � x2)

f(x2) + gT
3 (x � x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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Convex and Lipschitz = bounded subgradients

Lemma (Exercise 30)

Let f : dom(f) ! R be convex, dom(f) open, B 2 R+. Then the following two
statements are equivalent.

(i) kgk  B for all x 2 dom(f) and all g 2 @f(x).

(ii) |f(x) � f(y)|  Bkx � yk for all x,y 2 dom(f).
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Subgradient optimality condition

Lemma
Suppose that f : dom(f) ! R and x 2 dom(f). If 0 2 @f(x), then x is a global
minimum.

Proof.
By definition of subgradients, g = 0 2 @f(x) gives

f(y) � f(x) + g>(y � x) = f(x)

for all y 2 dom(f), so x is a global minimum.
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Di↵erentiability of convex functions

How “wild” can a non-di↵erentiable convex function be?

Weierstrass function: a function that is continuous everywhere but di↵erentiable
nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg
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Di↵erentiability of convex functions

Theorem ([?, Theorem 25.5])

A convex function f : dom(f) ! R is di↵erentiable almost everywhere.

In other words:

I Set of points where f is non-di↵erentiable has measure 0 (no volume).

I For all x 2 dom(f) and all " > 0, there is a point x0 such that kx � x0
k < " and

f is di↵erentiable at x0.
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The subgradient descent algorithm

Subgradient descent: choose x0 2 Rd.

Let gt 2 @f(xt)

xt+1 := xt � �tgt

for times t = 0, 1, . . . , and stepsizes �t � 0.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well, but so far, we didn’t need it.
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Lipschitz convex functions: O(1/"2) steps
Theorem
Let f : Rd

! R be convex and B-Lipschitz continuous with a global minimum x?;
furthermore, suppose that kx0 � x?

k  R. Choosing the constant stepsize

� :=
R

B
p

T
,

subgradient descent yields

1

T

T�1X

t=0

f(xt) � f(x?) 
RB
p

T
.

Proof is identical to the one of Theorem 2.1, except. . .

I In vanilla analyis, now use gt 2 @f(xt) instead of gt = rf(xt).

I Inequality f(xt) � f(x?)  g>
t (xt � x?) now follows from subgradient property

instead of first-order charaterization of convexity.
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Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if
these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T  d � 1 and starting point x0, there is a function f in the problem class of
B-Lipschitz functions over Rd, such that any (sub)gradient method has an objective
error at least

f(xT ) � f(x?) �
RB

2(1 +
p

T + 1)
.
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Smooth (non-di↵erentiable) functions?

They don’t exist (Exercise 31)!

x

f(x) = |x|

0

At 0, graph can’t be below a tangent paraboloid.

Can we still improve over O(1/"
2) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) � f(x) + g
T (y � x) for all y

(�� (g,�1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x � x1)

f(x2) + gT
2 (x � x2)

f(x2) + gT
3 (x � x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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