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Convergence in O(1/¢) steps

Same as vanilla case for smooth functions, but now for any A for which we can compute

the proximal mapping.
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Subgradients of s Afo
at if f is not differentiable?

Definition (75()() (S o va%/oJ

g € R% is a subgradient of f at x if

o
\/ fly)> f(x)+g' (y —x) forally € dom(f)
— - EE—
f(x) o

f(z1) +g{ (= — 331)\
=) f(@2) + 9o (x — 2)
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0f(x) C R< is the subdifferential, the set of subgradients of f at x.
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Subgradients || é(ﬂ ~

Example:
Yy 1y
fy) > gy Y —2y
Subgradient condition at z = 0: . _c
g fiscn D sobgod
IR uN
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Subgradients ||

Example:

Yy 1y

f(y) > gy Yy —2y

Subgradient condition at x = 0: f(y) > f(0) + g(y — 0) = gy.
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Subgradients Il

Lemma (Exercise 28)
If f:dom(f) — R is differentiable at x € dom( f), then 0f(x) C {Vf(x)}.

Either exactly one subgradient V f(x). ..

X y
...or no subgradient at all.
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Subgradient characterization of convexity

“convex = subgradients everywhere”

Lemma (Exercise 29)

A function f : dom(f) — R is convex if and only if dom(f) is convex and Of(x) # ()
for all x € dom(f).

f(x)

f(@1) + g1 (& — x1)
f(@2) + g5 (z — 22)

T 2
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Convex and Lipschitz = bounded subgradients

Lemma (Exercise 30)

Let f: dom(f) — R be convex, dom(f) open, B € R. Then the following two
statements are equivalent.

(i) ||lg]| < B for all x € dom(f) and all g € Jf(x).
(i) [f(x) = f(y)l < Blx -yl for all x,y € dom(f).
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Subgradient optimality condition

Lemma
Suppose that f : dom(f) — R and x € dom(f). If0 € 0f(x), then x is a global
minimum.

Proof.
By definition of subgradients, g = 0 € Jf(x) gives
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Subgradient optimality condition

Lemma
Suppose that f : dom(f) — R and x € dom(f). If0 € 0f(x), then x is a global

minimum.

Proof.
By definition of subgradients, g = 0 € Jf(x) gives

fy) > fx)+g' (y—x) = f(x)

for all y € dom(f), so x is a global minimum. ]
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Differentiability of convex functions
How “wild” can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable
nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg
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Differentiability of convex functions
y N A

Theorem ([?, Theorem 25.5])

A convex function f : dom(f) — R is differentiable almost everywhere.

/\
In other words:

» Set of points where f is non-differentiable has measure 0 (no volume).

» For all x € dom(f) and all € > 0, there is a point x’ such that ||x — x/|| < € and
f is differentiable at x’.
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The subgradient descent algorithm

Subgradient descent: choose xy € R?.

Let g € Of (x1)

Xt41 = Xt — Vt8t
for times t = 0,1,..., and stepsizes v; > 0.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well, but so far, we didn't need it.
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Lipschitz convex functions: O(1/&?) steps

Theorem
Let f: RY — R be convex and B-Lipschitz continuous with a global minimum x*;
furthermore, suppose that ||xg — x*|| < R. Choosing the constant stepsize

subgradient descent yields

1
T
t=0

Proof is identical to the one of Theorem 2.1, except. ..

» In vanilla analyis, now use g; € 0f(x¢) instead of g = V f(x¢).
» Inequality f(x;) — f(x*) < g/ (x; — x*) now follows from subgradient property
instead of first-order charaterization of convexity.

USC Optimization for Machine Learning CSCI-599

. 17/1



E&@ CJ z;(““ I f"”)
(JQ

~ <P

S e



Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if

these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T' < d — 1 and starting point xq, there is a function f in the problem class of

B-Lipschitz functions over R%, such that any (sub)gradient method has an objective

error at least
RB

(1+VT+1)

f(xr) — f(x*) > 5
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Smooth (non-differentiable) functions? @

They don't exist (Exercise 31)! L .
y don't st (Exercce 3 obffenechal i

\

f(x) = ||

z 0
At 0, graph can't be below a tangent paraboloid.

Can we still improve over O(1/&?) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

f(=@)

flx1) + 9?(90 - 961)
) () + g5 (x — @)
PORRTCS R (EE
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