Optimization for Machine Learning CSCI-599

Lecture 3: Constrained and Non-Smooth Gradient Descent

Sai Praneeth Karimireddy

USC - https://spkreddy.org/optmlspring2025.html February 3, 2025

Convergence in $\mathcal{O}(1/\varepsilon)$ steps

Same as vanilla case for smooth functions, but now for any h for which we can compute the proximal mapping.

Recap
$$x_{t+1} = x_t - x \nabla f(x_t)$$
 6D
 $f_{t+1} = x_t - x \nabla f(x_t)$ 6D
 $f_{t+1} = x_t - x \nabla f(x_t)$ 6D
 $f_{t+1} = x_t + x_t$
 $x = \frac{R}{R_{STT}} \Rightarrow f(x_t) - f^* \leq \frac{R}{T}$
 $x = \frac{1}{2} = \frac{1}{2} \frac{R}{T} + \frac{1}{2} \frac{1}{T}$
 $x = \frac{1}{2} \Rightarrow f(x_t) - f^* \leq \frac{LR}{T}$
 $x = \frac{1}{2} \Rightarrow f(x_t) - f^* \leq \frac{LR}{T}$
 $f(x_t) = \frac{1}{2} \frac{1}{2}$

 $\partial f(\mathbf{x}) \subseteq \mathbb{R}^d$ is the subdifferential, the set of subgradients of f at \mathbf{x} .

Subgradients II

Example:

Subgradient condition at x = 0:

fiscux =) subgad exists

Subgradients II

Example:

Subgradient condition at x = 0: $f(y) \ge f(0) + g(y - 0) = gy$. $\partial f(0) = [-1, 1]$

Subgradients III

Lemma (Exercise 28)

If $f : \mathbf{dom}(f) \to \mathbb{R}$ is differentiable at $\mathbf{x} \in \mathbf{dom}(f)$, then $\partial f(\mathbf{x}) \subseteq \{\nabla f(\mathbf{x})\}$.

Either exactly one subgradient $\nabla f(\mathbf{x})...$

Subgradient characterization of convexity

"convex = subgradients everywhere"

Lemma (Exercise 29)

A function $f : \operatorname{dom}(f) \to \mathbb{R}$ is convex if and only if $\operatorname{dom}(f)$ is convex and $\partial f(\mathbf{x}) \neq \emptyset$ for all $\mathbf{x} \in \operatorname{dom}(f)$.

-> het
$$g(x_{t})$$
 be $(x_{t})^{n}$ subgrodient of f at x_{t}
- $x_{t+1} = x_{t} - x(g(x_{t}))$ subgrodient
 x^{*} is opt of minimized
if $P((x^{*}) = 0$
 $f(x) = |x|$
 $0 \in g(x^{*}) = 1$ x^{*} is optimum

Convex and Lipschitz = bounded subgradients

Lemma (Exercise 30)

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be convex, $\mathbf{dom}(f)$ open, $B \in \mathbb{R}_+$. Then the following two statements are equivalent.

(i) $\|\mathbf{g}\| \leq B$ for all $\mathbf{x} \in \mathbf{dom}(f)$ and all $\mathbf{g} \in \partial f(\mathbf{x})$. (ii) $|f(\mathbf{x}) - f(\mathbf{y})| \leq B \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{dom}(f)$.

Subgradient optimality condition

Lemma

Suppose that $f : \operatorname{dom}(f) \to \mathbb{R}$ and $\mathbf{x} \in \operatorname{dom}(f)$. If $\mathbf{0} \in \partial f(\mathbf{x})$, then \mathbf{x} is a global minimum.

Proof.

By definition of subgradients, $\mathbf{g} = \mathbf{0} \in \partial f(\mathbf{x})$ gives

Subgradient optimality condition

Lemma

Suppose that $f : \operatorname{dom}(f) \to \mathbb{R}$ and $\mathbf{x} \in \operatorname{dom}(f)$. If $\mathbf{0} \in \partial f(\mathbf{x})$, then \mathbf{x} is a global minimum.

Proof.

By definition of subgradients, $\mathbf{g} = \mathbf{0} \in \partial f(\mathbf{x})$ gives

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^{\top}(\mathbf{y} - \mathbf{x}) = f(\mathbf{x})$$

for all $\mathbf{y} \in \mathbf{dom}(f)$, so \mathbf{x} is a global minimum.

Differentiability of convex functions

How "wild" can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg

USC Optimization for Machine Learning CSCI-599

Differentiability of convex functions

Theorem ([?, Theorem 25.5])

A convex function $f : \mathbf{dom}(f) \to \mathbb{R}$ is differentiable almost everywhere.

In other words:

- Set of points where f is non-differentiable has measure 0 (no volume).
- For all $\mathbf{x} \in \mathbf{dom}(f)$ and all $\varepsilon > 0$, there is a point \mathbf{x}' such that $\|\mathbf{x} \mathbf{x}'\| < \varepsilon$ and f is differentiable at \mathbf{x}' .

The subgradient descent algorithm

Subgradient descent: choose $\mathbf{x}_0 \in \mathbb{R}^d$.

Let $\mathbf{g}_t \in \partial f(\mathbf{x}_t)$ $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \mathbf{g}_t$

for times $t = 0, 1, \ldots$, and stepsizes $\gamma_t \ge 0$.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well, but so far, we didn't need it.

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and *B*-Lipschitz continuous with a global minimum \mathbf{x}^* ; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \leq R$. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}},$$

subgradient descent yields

Proof is identical to the one of Theorem 2.1, except...

- ▶ In vanilla analyis, now use $\mathbf{g}_t \in \partial f(\mathbf{x}_t)$ instead of $\mathbf{g}_t = \nabla f(\mathbf{x}_t)$.
- ▶ Inequality $f(\mathbf{x}_t) f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t \mathbf{x}^*)$ now follows from subgradient property instead of first-order charaterization of convexity.

USC Optimization for Machine Learning CSCI-599

 $\begin{array}{c} \sum g_{t}^{T}(x_{t}^{-},y^{*}) \leq \frac{1}{2}(||x_{0}^{-},x^{*}||^{2} - ||x_{1}^{-},x^{*}||^{2}) \\ \sum f(x_{t}^{-},y^{*}) \leq \frac{1}{2}(||x_{0}^{-},x^{*}||^{2} - ||x_{1}^{-},x^{*}||^{2}) \\ + \frac{\gamma}{2}\sum (||g_{t}^{-}||^{2}) + \frac{\gamma}{2}\sum (||g_{t}^{-}||^{2}) \\ \leq B \end{array}$

Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if these rates are best possible or not. Surprisingly, the rate can indeed not be improved in general.

Theorem (Nesterov)

For any $T \leq d-1$ and starting point \mathbf{x}_0 , there is a function f in the problem class of *B*-Lipschitz functions over \mathbb{R}^d , such that any (sub)gradient method has an objective error at least

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \ge \frac{RB}{2(1+\sqrt{T+1})}$$

Smooth (non-differentiable) functions?

They don't exist (Exercise 31)!

At 0, graph can't be below a tangent paraboloid.

Can we still improve over $O(1/\varepsilon^2)$ steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent paraboloids).

x

f(x) = |x|

0

Smoothness

