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Section 3.6

Proximal Gradient Descent
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Composite optimization problems

Consider objective functions composed as

f(x) := g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional term, which however
doesn’t satisfy the assumptions of niceness which we used in the convergence analysis
so far.

In particular, an important case is when h is not differentiable.
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Idea

The classical gradient step for minimizing g:

xt+1 = argmin
y

g(xt) +∇g(xt)
⊤(y − xt) +

1

2γ
∥y − xt∥2 .

For the stepsize γ := 1
L

it exactly minimizes the local quadratic model of g at our current iterate xt,

formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

xt+1 := argmin
y

g(xt) +∇g(xt)
⊤(y − xt) +

1

2γ
∥y − xt∥2 + h(y)

= argmin
y

1

2γ
∥y − (xt − γ∇g(xt))∥2 + h(y) ,

the proximal gradient descent update.
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The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

xt+1 := proxh,γ(xt − γ∇g(xt)) .

where the proximal mapping for a given function h, and parameter γ > 0 is defined as

proxh,γ(z) := argmin
y

{ 1

2γ
∥y − z∥2 + h(y)

}
.

The update step can be equivalently written as

xt+1 = xt − γGγ(xt)

for Gh,γ(x) :=
1
γ

(
x− proxh,γ(x− γ∇g(x))

)
being the so called generalized gradient

of f .
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A generalization of gradient descent?

▶ h ≡ 0: recover gradient descent

▶ h ≡ ιX : recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the
convex function

ιX : Rd → R ∪+∞

x 7→ ιX(x) :=

{
0 if x ∈ X,

+∞ otherwise.

Proximal mapping becomes

proxh,γ(z) := argmin
y

{ 1

2γ
∥y − z∥2 + ιX(y)

}
= argmin

y∈X
∥y − z∥2
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Soft Thresholding for ℓ1 penalty

Proximal Mapping for ℓ1 Regularization: For h(x) = λ∥x∥1, the proximal operator
is given by the soft-thresholding function:

proxλ∥·∥1,γ(z) = sign(z)⊙max(|z| − γλ, 0)

where the operation is applied element-wise.

USC Optimization for Machine Learning CSCI-599 7/38



Iterative Soft Thresholding for Lasso

Lasso regression solves the problem:

min
x

{1

2
∥Ax− b∥2 + λ∥x∥1

}
where the ℓ1 penalty promotes sparsity in x.

Proximal Gradient Descent for Lasso:

xt+1 = sign(xt − γA⊤(Axt − b))⊙max
(
|xt − γA⊤(Axt − b)| − γλ, 0

)
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Chapter 5

Stochastic Gradient Descent
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Stochastic gradient descent

Many objective functions are sum structured:

f(x) =
1

n

n∑
i=1

fi(x).

Example: fi is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating ∇f(x) of a sum-structured function is expensive (sum of n gradients).
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Stochastic gradient descent: the algorithm

choose x0 ∈ Rd.

sample i ∈ [n] uniformly at random

xt+1 := xt − γt∇fi(xt).

for times t = 0, 1, . . . , and stepsizes γt ≥ 0.

Only update with the gradient of fi instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector gt := ∇fi(xt) is called a stochastic gradient.

gt is a vector of d random variables, but we will also simply call this a random variable.
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Unbiasedness

Can’t use convexity
f(xt)− f(x⋆) ≤ g⊤

t (xt − x⋆)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient gt turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, gt is an unbiased estimate of ∇f(xt):

E
[
gt
∣∣xt = x

]
=

1

n

n∑
i=1

∇fi(x) = ∇f(x), x ∈ Rd.
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The inequality f(xt)− f(x⋆) ≤ g⊤
t (xt − x⋆) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise ??) yields

E
[
g⊤
t (x− x⋆)

∣∣xt = x
]
=

E
[
gt
∣∣xt = x

]⊤
(x− x⋆) = ∇f(x)⊤(x− x⋆).

Event {xt = x} can occur only for x in some finite set X (xt is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise ??):

E
[
g⊤
t (xt − x⋆)

]
=

∑
x∈X

E
[
g⊤
t (x− x⋆)

∣∣xt = x
]
prob(xt = x)

=
∑
x∈X

∇f(x)⊤(x− x⋆) prob(xt = x) = E
[
∇f(xt)

⊤(xt − x⋆)
]
.

Hence, ↓ convexity

E
[
g⊤
t (xt − x⋆)

]
= E

[
∇f(xt)

⊤(xt − x⋆)
]
≥ E

[
f(xt)− f(x⋆)

]
.
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Bounded stochastic gradients: O(1/ε2) steps
Theorem
Let f : Rd → R be convex and differentiable, x⋆ a global minimum; furthermore,
suppose that ∥x0 − x⋆∥ ≤ R, and that E

[
∥gt∥2

]
≤ B2 for all t. Choosing the constant

stepsize

γ :=
R

B
√
T

stochastic gradient descent yields

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x⋆) ≤ RB√

T
.

Same procedure as every week. . . except

▶ we assume bounded stochastic gradients in expectation;

▶ error bound holds in expectation.
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Bounded stochastic gradients: O(1/ε2) steps II

Proof.
Vanilla analysis (this time, gt is the stochastic gradient):

T−1∑
t=0

g⊤
t (xt − x⋆) ≤ γ

2

T−1∑
t=0

∥gt∥2 +
1

2γ
∥x0 − x⋆∥2.

Taking expectations

and using “convexity in expectation”:

T−1∑
t=0

E
[
f(xt)− f(x⋆)

]
≤

T−1∑
t=0

E
[
g⊤
t (xt − x⋆)

]
≤ γ

2

T−1∑
t=0

E
[
∥gt∥2

]
+

1

2γ
∥x0 − x⋆∥2

≤ γ

2
B2T +

1

2γ
R2.

Result follows as every week (optimize γ) . . .
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Convergence rate comparison: SGD vs GD
Classic GD: For vanilla analysis, we assumed that ∥∇f(x)∥2 ≤ B2

GD for all x ∈ Rd,
where BGD was a constant. So for sum-objective:∥∥∥ 1

n

∑
i

∇fi(x)
∥∥∥2 ≤ B2

GD ∀x

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called B2

SGD.
1

n

∑
i

∥∥∇fi(x)
∥∥2 ≤ B2

SGD ∀x

So by Jensen’s inequality for ∥.∥2

▶ B2
GD ≈

∥∥∥ 1
n

∑
i∇fi(x)

∥∥∥2 ≤ 1
n

∑
i

∥∥∇fi(x)
∥∥2 ≈ B2

SGD

▶ B2
GD can be smaller than B2

SGD, but often comparable.
Very similar if larger mini-batches are used.
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Tame strong convexity: O(1/ε) steps

Theorem
Let f : Rd → R be differentiable and strongly convex with parameter µ > 0; let x⋆ be
the unique global minimum of f . With decreasing step size

γt :=
2

µ(t+ 1)

stochastic gradient descent yields

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x⋆)

]
≤ 2B2

µ(T + 1)
,

where B2 := maxTt=1E
[
∥gt∥2

]
.

Almost same result as for subgradient descent, but in expectation.
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Tame strong convexity: O(1/ε) steps II

Proof.
Take expectations over vanilla analysis, before summing up (with varying stepsize γt):

E
[
g⊤
t (xt − x⋆)

]
=

γt
2
E
[
∥gt∥2

]
+

1

2γt

(
E
[
∥xt − x⋆∥2

]
− E

[
∥xt+1 − x⋆∥2

])
.

“Strong convexity in expectation”:

E
[
g⊤
t (xt − x⋆)

]
=

E
[
∇f(xt)

⊤(xt − x⋆)
]
≥ E

[
f(xt)− f(x⋆)

]
+

µ

2
E
[
∥xt − x⋆∥2

]
Putting it together (with E

[
∥gt∥2

]
≤ B2):

E[f(xt)− f(x⋆)] ≤ B2γt
2 +

(γ−1
t −µ)
2 E

[
∥xt − x⋆∥2

]
− γ−1

t
2 E

[
∥xt+1 − x⋆∥2

]
.

Proof continues as for subgradient descent, this time with expectations.
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Mini-batch SGD

Instead of using a single element fi, use an average of several of them:

g̃t :=
1

m

m∑
j=1

gj
t .

Extreme cases:
m = 1 ⇔ SGD as originally defined
m = n ⇔ full gradient descent

Benefit: Gradient computation can be naively parallelized
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Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g̃t will be closer to the true
gradient, in expectation:

E
[∥∥∥g̃t −∇f(xt)

∥∥∥2] =

E
[∥∥∥ 1

m

∑m
j=1 g

j
t −∇f(xt)

∥∥∥2]
= 1

mE
[
∥g1

t −∇f(xt)∥2
]

= 1
mE

[
∥g1

t ∥2
]
− 1

m∥∇f(xt)∥2 ≤ B2

m .

Using a modification of the SGD analysis, can use this quantity to relate convergence
rate to the rate of full gradient descent.
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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a
subgradient of fi in each iteration. The update of stochastic subgradient descent is
given by

sample i ∈ [n] uniformly at random

let gt ∈ ∂fi(xt)

xt+1 := xt − γtgt.

In other words, we are using an unbiased estimate of a subgradient at each step,
E
[
gt
∣∣xt

]
∈ ∂f(xt).

Convergence in O(1/ε2), by using the subgradient property at the beginning of the
proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD convergence in O(1/ε2) steps
directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting
algorithm is called projected SGD.
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Chapter 6

Non-convex Optimization

USC Optimization for Machine Learning CSCI-599 23/38



Gradient Descent in the nonconvex world

▶ may get stuck in a local minimum and miss the global minimum;

x∗ y∗ x0
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Gradient Descent in the nonconvex world II
Even if there is a unique local minimum (equal to the global minimum), we

▶ may get stuck in a saddle point;
▶ run off to infinity;
▶ possibly encounter other bad behaviors.

x0 y∗ x∗ x∗ x0
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Gradient Descent in the nonconvex world III

Often, we observe good behavior in practice.

Theoretical explanations mostly missing.

This lecture: under favorable conditions, we sometimes can say something useful about
the behavior of gradient descent, even on nonconvex functions.

USC Optimization for Machine Learning CSCI-599 26/38



Smooth (but not necessarily convex) functions
Recall: A differentiable f : dom(f) → R is smooth with parameter L ∈ R+ over a
convex set X ⊆ dom(f) if

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2, ∀x,y ∈ X. (1)

Definition does not require convexity.

x y

f(y)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2
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Concave functions
f is called concave if −f is convex.

For all x, the graph of a differentiable concave function is below the tangent
hyperplane at x.

x y

f(y)

f(x) +∇f(x)>(y − x)

⇒ concave functions are smooth with L = 0. . . but boring from an optimization point
of view (no global minimum), gradient descent runs off to infinity
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Bounded Hessians ⇒ smooth

Lemma
Let f : dom(f) → R be twice differentiable, with X ⊆ dom(f) a convex set, and∥∥∇2f(x)

∥∥ ≤ L for all x ∈ X, where ∥·∥ is spectral norm. Then f is smooth with
parameter L over X.

Examples:

▶ all quadratic functions f(x) = x⊤Ax+ b⊤x+ c

▶ f(x) = sin(x) (many global minima)
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Bounded Hessians ⇒ smooth II

Proof.
By Theorem ?? (applied to the gradient function ∇f), bounded Hessians imply
Lipschitz continuity of the gradient,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , x,y ∈ X.

To show that this implies smoothness, we use h(1)− h(0) =
∫ 1
0 h′(t)dt with

h(t) := f
(
x+ t(y − x)

)
, t ∈ [0, 1],

Chain rule:
h′(t) = ∇f

(
x+ t(y − x)

)⊤
(y − x).
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Bounded Hessians ⇒ smooth III

Proof.
For x,y ∈ X:

f(y)− f(x)−∇f(x)⊤(y − x)

= h(1)− h(0)−∇f(x)⊤(y − x) (definition of h)

=

∫ 1

0
h′(t)dt−∇f(x)⊤(y − x)

=

∫ 1

0
∇f(x+ t(y − x))⊤(y − x)dt−∇f(x)⊤(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))⊤(y − x)−∇f(x)⊤(y − x)

)
dt

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)⊤
(y − x)dt

USC Optimization for Machine Learning CSCI-599 31/38



Bounded Hessians ⇒ smooth III

Proof.
For x,y ∈ X:

f(y)− f(x)−∇f(x)⊤(y − x)

= h(1)− h(0)−∇f(x)⊤(y − x) (definition of h)

=

∫ 1

0
h′(t)dt−∇f(x)⊤(y − x)

=

∫ 1

0
∇f(x+ t(y − x))⊤(y − x)dt−∇f(x)⊤(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))⊤(y − x)−∇f(x)⊤(y − x)

)
dt

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)⊤
(y − x)dt
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Bounded Hessians ⇒ smooth IV
Proof.
For x,y ∈ X:

f(y)− f(x)−∇f(x)⊤(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)⊤
(y − x)dt

≤
∫ 1

0

∣∣(∇f(x+ t(y − x))−∇f(x)
)⊤

(y − x)
∣∣dt

≤
∫ 1

0

∥∥(∇f(x+ t(y − x))−∇f(x)
)∥∥ ∥(y − x)∥ dt (Cauchy-Schwarz)

≤
∫ 1

0
L ∥t(y − x)∥ ∥(y − x)∥ dt (Lipschitz continuous gradients (??))

=

∫ 1

0
Lt ∥x− y∥2 dt =

L

2
∥x− y∥2 .
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Smooth ⇒ bounded Hessians?

Yes, over any open convex set X (Exercise ??).
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Gradient descent on smooth functions
Will prove: ∥∇f(xt)∥2 → 0 for t → ∞. . .

. . . at the same rate as f(xt)− f(x⋆) → 0 in the convex case.

f(xt)− f(x⋆) itself may not converge to 0 in the nonconvex case:

x∗ y∗ x0
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What does ∥∇f(xt)∥2 → 0 mean?

It may or may not mean that we converge to a critical point (∇f(y⋆) = 0)

x0 y∗ x∗ x∗ x0
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Gradient descent on smooth (not necessarily convex) functions

Theorem
Let f : Rd → R be differentiable with a global minimum x⋆; furthermore, suppose that
f is smooth with parameter L according to Definition ??. Choosing stepsize

γ :=
1

L
,

gradient descent yields

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤
2L

T

(
f(x0)− f(x⋆)

)
, T > 0.

In particular, ∥∇f(xt)∥2 ≤ 2L
T

(
f(x0)− f(x⋆)

)
for some t ∈ {0, . . . , T − 1}.

And also, limt→∞ ∥∇f(xt)∥2 = 0 (Exercise ??).
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Gradient descent on smooth (not necessarily convex) functions II

Proof.
Sufficient decrease (Lemma ??), does not require convexity:

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2, t ≥ 0.

Rewriting:
∥∇f(xt)∥2 ≤ 2L

(
f(xt)− f(xt+1)

)
.

Telescoping sum:

T−1∑
t=0

∥∇f(xt)∥2 ≤

2L
(
f(x0)− f(xT )

)
≤ 2L

(
f(x0)− f(x⋆)

)
.

The statement follows (divide by T ).
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No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e.
pass a critical point (Exercise ??).

x x xx′ x′ x′ = y?y? y?

x′ = x− γ∇f(x), γ < 1/L overshooting may happen with γ = 1/L
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