Optimization for Machine Learning CSCI-599

Lecture 3: Constrained and Non-Smooth Gradient Descent

Sai Praneeth Karimireddy

USC - https://spkreddy.org/optmlspring2025.html February 10, 2025

Section 3.6

Proximal Gradient Descent

Composite optimization problems

Consider objective functions composed as

$$f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x})$$

where g is a "nice" function, where as h is a "simple" additional term, which however doesn't satisfy the assumptions of niceness which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.

Idea

The classical gradient step for minimizing g:

$$\mathbf{x}_{t+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^{\top} (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2 \ .$$

For the stepsize $\gamma := \frac{1}{L}$ it exactly minimizes the local quadratic model of g at our current iterate \mathbf{x}_t , formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

$$\begin{aligned} \mathbf{x}_{t+1} &:= \underset{\mathbf{y}}{\operatorname{argmin}} \ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^\top (\mathbf{y} - \mathbf{x}_t) + \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{x}_t\|^2 + h(\mathbf{y}) \\ &= \underset{\mathbf{y}}{\operatorname{argmin}} \ \frac{1}{2\gamma} \|\mathbf{y} - (\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t))\|^2 + h(\mathbf{y}) \ , \end{aligned}$$

the proximal gradient descent update.

USC Optimization for Machine Learning CSCI-599

The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

$$\mathbf{x}_{t+1} := \operatorname{prox}_{h,\gamma}(\mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t)) \ .$$

where the proximal mapping for a given function h, and parameter $\gamma > 0$ is defined as

$$\operatorname{prox}_{h,\gamma}(\mathbf{z}) := \operatorname{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{z}\|^2 + h(\mathbf{y}) \right\} \,.$$

The update step can be equivalently written as

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma G_{\gamma}(\mathbf{x}_t)$$
for $G_{h,\gamma}(\mathbf{x}) := \frac{1}{\gamma} \Big(\mathbf{x} - \operatorname{prox}_{h,\gamma}(\mathbf{x} - \gamma \nabla g(\mathbf{x})) \Big)$ being the so called generalized gradient of f .

A generalization of gradient descent?

- ▶ $h \equiv 0$: recover gradient descent
- $h \equiv \iota_X$: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the convex function

$$\begin{split} \boldsymbol{\iota}_X : \mathbb{R}^d \to \mathbb{R} \cup +\infty \\ \mathbf{x} \mapsto \boldsymbol{\iota}_X(\mathbf{x}) := \begin{cases} 0 & \text{if } \mathbf{x} \in X, \\ +\infty & \text{otherwise.} \end{cases} \end{split}$$

Proximal mapping becomes

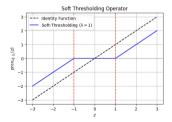
$$\operatorname{prox}_{h,\gamma}(\mathbf{z}) := \operatorname{argmin}_{\mathbf{y}} \left\{ \frac{1}{2\gamma} \|\mathbf{y} - \mathbf{z}\|^2 + \boldsymbol{\iota}_X(\mathbf{y}) \right\} = \operatorname{argmin}_{\mathbf{y} \in X} \|\mathbf{y} - \mathbf{z}\|^2$$

Soft Thresholding for ℓ_1 penalty

Proximal Mapping for ℓ_1 **Regularization:** For $h(\mathbf{x}) = \lambda ||\mathbf{x}||_1$, the proximal operator is given by the soft-thresholding function:

$$\operatorname{prox}_{\lambda \| \cdot \|_{1}, \gamma}(\mathbf{z}) = \operatorname{sign}(\mathbf{z}) \odot \max(|\mathbf{z}| - \gamma \lambda, 0)$$

where the operation is applied element-wise.



Iterative Soft Thresholding for Lasso

Lasso regression solves the problem:

$$\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1 \right\}$$

where the ℓ_1 penalty promotes sparsity in \mathbf{x} .

Proximal Gradient Descent for Lasso:

$$\mathbf{x}_{t+1} = \mathsf{sign}(\mathbf{x}_t - \gamma A^{\top}(A\mathbf{x}_t - \mathbf{b})) \odot \max\left(|\mathbf{x}_t - \gamma A^{\top}(A\mathbf{x}_t - \mathbf{b})| - \gamma \lambda, 0\right)$$

Chapter 5

Stochastic Gradient Descent

USC Optimization for Machine Learning CSCI-599

Stochastic gradient descent

Many objective functions are sum structured:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}).$$

Example: f_i is the cost function of the *i*-th observation, taken from a training set of n observation.

Evaluating $\nabla f(\mathbf{x})$ of a sum-structured function is expensive (sum of n gradients).

Stochastic gradient descent: the algorithm

choose $\mathbf{x}_0 \in \mathbb{R}^d$.

sample $i \in [n]$ uniformly at random $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \nabla f_i(\mathbf{x}_t).$

for times $t = 0, 1, \ldots$, and stepsizes $\gamma_t \ge 0$.

Only update with the gradient of f_i instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector $\mathbf{g}_t := \nabla f_i(\mathbf{x}_t)$ is called a stochastic gradient.

 \mathbf{g}_t is a vector of d random variables, but we will also simply call this a random variable.

Unbiasedness

Can't use convexity

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})$$

on top of the vanilla analysis, as this may hold or not hold, depending on how the stochastic gradient \mathbf{g}_t turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, \mathbf{g}_t is an **unbiased estimate** of $\nabla f(\mathbf{x}_t)$:

$$\mathbb{E}[\mathbf{g}_t | \mathbf{x}_t = \mathbf{x}] =$$

Unbiasedness

Can't use convexity

$$f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \le \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})$$

on top of the vanilla analysis, as this may hold or not hold, depending on how the stochastic gradient \mathbf{g}_t turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, \mathbf{g}_t is an **unbiased estimate** of $\nabla f(\mathbf{x}_t)$:

$$\mathbb{E}\big[\mathbf{g}_t\big|\mathbf{x}_t = \mathbf{x}\big] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d.$$

The inequality $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top(\mathbf{x}_t - \mathbf{x}^*)$ holds in expectation

For any fixed x, linearity of conditional expectations (Exercise ??) yields

$$\mathbb{E} \left[\mathbf{g}_t^{\top} (\mathbf{x} - \mathbf{x}^{\star}) \middle| \mathbf{x}_t = \mathbf{x} \right] =$$

The inequality $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ holds in expectation For any fixed \mathbf{x} , linearity of conditional expectations (Exercise ??) yields

$$\mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x} - \mathbf{x}^{\star}) | \mathbf{x}_t = \mathbf{x}] = \mathbb{E}[\mathbf{g}_t | \mathbf{x}_t = \mathbf{x}]^{\top}(\mathbf{x} - \mathbf{x}^{\star}) = \nabla f(\mathbf{x})^{\top}(\mathbf{x} - \mathbf{x}^{\star}).$$

Event $\{\mathbf{x}_t = \mathbf{x}\}\$ can occur only for \mathbf{x} in some finite set X (\mathbf{x}_t is determined by the choices of indices in all iterations so far). Partition Theorem (Exercise ??):

$$\mathbb{E}\big[\mathbf{g}_t^\top(\mathbf{x}_t - \mathbf{x}^\star)\big] =$$

The inequality $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ holds in expectation For any fixed \mathbf{x} , linearity of conditional expectations (Exercise ??) yields

$$\mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x} - \mathbf{x}^{\star}) | \mathbf{x}_t = \mathbf{x}] = \mathbb{E}[\mathbf{g}_t | \mathbf{x}_t = \mathbf{x}]^{\top}(\mathbf{x} - \mathbf{x}^{\star}) = \nabla f(\mathbf{x})^{\top}(\mathbf{x} - \mathbf{x}^{\star}).$$

Event $\{\mathbf{x}_t = \mathbf{x}\}\$ can occur only for \mathbf{x} in some finite set X (\mathbf{x}_t is determined by the choices of indices in all iterations so far). Partition Theorem (Exercise ??):

$$\begin{split} \mathbb{E} \big[\mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^\star) \big] &= \sum_{\mathbf{x} \in X} \mathbb{E} \big[\mathbf{g}_t^\top (\mathbf{x} - \mathbf{x}^\star) \big| \mathbf{x}_t = \mathbf{x} \big] \operatorname{prob}(\mathbf{x}_t = \mathbf{x}) \\ &= \sum_{\mathbf{x} \in X} \nabla f(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^\star) \operatorname{prob}(\mathbf{x}_t = \mathbf{x}) = \mathbb{E} \big[\nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}^\star) \big]. \end{split}$$

Hence,

The inequality $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ holds in expectation For any fixed \mathbf{x} , linearity of conditional expectations (Exercise ??) yields

$$\mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x} - \mathbf{x}^{\star}) | \mathbf{x}_t = \mathbf{x}] = \mathbb{E}[\mathbf{g}_t | \mathbf{x}_t = \mathbf{x}]^{\top}(\mathbf{x} - \mathbf{x}^{\star}) = \nabla f(\mathbf{x})^{\top}(\mathbf{x} - \mathbf{x}^{\star}).$$

Event $\{\mathbf{x}_t = \mathbf{x}\}\$ can occur only for \mathbf{x} in some finite set X (\mathbf{x}_t is determined by the choices of indices in all iterations so far). Partition Theorem (Exercise ??):

$$\mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})] = \sum_{\mathbf{x} \in X} \mathbb{E}[\mathbf{g}_t^{\top}(\mathbf{x} - \mathbf{x}^{\star}) | \mathbf{x}_t = \mathbf{x}] \operatorname{prob}(\mathbf{x}_t = \mathbf{x})$$
$$= \sum_{\mathbf{x} \in X} \nabla f(\mathbf{x})^{\top}(\mathbf{x} - \mathbf{x}^{\star}) \operatorname{prob}(\mathbf{x}_t = \mathbf{x}) = \mathbb{E}[\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})].$$

Hence,

 \downarrow convexity

$$\mathbb{E}\left[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\right] = \mathbb{E}\left[\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\right] \ge \mathbb{E}\left[f(\mathbf{x}_t) - f(\mathbf{x}^{\star})\right].$$

Bounded stochastic gradients: $\mathcal{O}(1/\varepsilon^2)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, \mathbf{x}^* a global minimum; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$, and that $\mathbb{E}[\|\mathbf{g}_t\|^2] \le B^2$ for all t. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}}$$

stochastic gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\big[f(\mathbf{x}_t)\big] - f(\mathbf{x}^{\star}) \le \frac{RB}{\sqrt{T}}.$$

Same procedure as every week... except

we assume bounded stochastic gradients in expectation;

error bound holds in expectation.

Bounded stochastic gradients: $\mathcal{O}(1/\varepsilon^2)$ steps II

Proof.

Vanilla analysis (this time, g_t is the stochastic gradient):

$$\sum_{t=0}^{T-1} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^\star) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

Taking expectations

Bounded stochastic gradients: $O(1/\varepsilon^2)$ steps II

Proof.

Vanilla analysis (this time, g_t is the stochastic gradient):

$$\sum_{t=0}^{T-1} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^\star) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

Taking expectations and using "convexity in expectation":

$$\begin{split} \sum_{t=0}^{T-1} \mathbb{E} \big[f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \big] &\leq \sum_{t=0}^{T-1} \mathbb{E} \big[\mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^{\star}) \big] &\leq -\frac{\gamma}{2} \sum_{t=0}^{T-1} \mathbb{E} \big[\|\mathbf{g}_t\|^2 \big] + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2 \\ &\leq -\frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2. \end{split}$$

Result follows as every week (optimize γ) . . .

Convergence rate comparison: SGD vs GD

Classic GD: For vanilla analysis, we assumed that $\|\nabla f(\mathbf{x})\|^2 \leq B_{\text{GD}}^2$ for all $\mathbf{x} \in \mathbb{R}^d$, where B_{GD} was a constant. So for sum-objective:

$$\left\|rac{1}{n}\sum_i
abla f_i(\mathbf{x})
ight\|^2 \le B^2_{\mathsf{GD}} \qquad orall \mathbf{x}$$

SGD: Assuming same for the expected squared norms of our stochastic gradients, now called B^2_{SGD} .

$$\frac{1}{n}\sum_{i}\left\|\nabla f_{i}(\mathbf{x})\right\|^{2} \leq B_{\mathsf{SGD}}^{2} \qquad \forall \mathbf{x}$$

So by Jensen's inequality for $\|.\|^2$

$$\blacktriangleright B_{\mathsf{GD}}^2 \approx \left\| \frac{1}{n} \sum_i \nabla f_i(\mathbf{x}) \right\|^2 \leq \frac{1}{n} \sum_i \left\| \nabla f_i(\mathbf{x}) \right\|^2 \approx B_{\mathsf{SGD}}^2$$

 B²_{GD} can be smaller than B²_{SGD}, but often comparable. Very similar if larger mini-batches are used.

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and strongly convex with parameter $\mu > 0$; let \mathbf{x}^* be the unique global minimum of f. With decreasing step size

$$\gamma_t := \frac{2}{\mu(t+1)}$$

stochastic gradient descent yields

$$\mathbb{E}\left[f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right)-f(\mathbf{x}^{\star})\right]\leq\frac{2B^{2}}{\mu(T+1)},$$

where $B^2 := \max_{t=1}^T \mathbb{E} [\| \mathbf{g}_t \|^2].$

Almost same result as for subgradient descent, but in expectation.

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps II

Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize γ_t):

$$\mathbb{E}\big[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\big] = \frac{\gamma_t}{2}\mathbb{E}\big[\|\mathbf{g}_t\|^2\big] + \frac{1}{2\gamma_t}\left(\mathbb{E}\big[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\big] - \mathbb{E}\big[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\big]\right).$$

"Strong convexity in expectation":

$$\mathbb{E}\big[\mathbf{g}_t^\top(\mathbf{x}_t - \mathbf{x}^\star)\big] =$$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps II

Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize γ_t):

$$\mathbb{E}\left[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\right] = \frac{\gamma_t}{2} \mathbb{E}\left[\|\mathbf{g}_t\|^2\right] + \frac{1}{2\gamma_t} \left(\mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\right] - \mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\right]\right).$$

"Strong convexity in expectation":

$$\mathbb{E}\left[\mathbf{g}_{t}^{\top}(\mathbf{x}_{t}-\mathbf{x}^{\star})\right] = \mathbb{E}\left[\nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t}-\mathbf{x}^{\star})\right] \geq \mathbb{E}\left[f(\mathbf{x}_{t})-f(\mathbf{x}^{\star})\right] + \frac{\mu}{2}\mathbb{E}\left[\|\mathbf{x}_{t}-\mathbf{x}^{\star}\|^{2}\right]$$

Putting it together (with $\mathbb{E}[||\mathbf{g}_t||^2] \leq B^2$):

$$\mathbb{E}[f(\mathbf{x}_t) - f(\mathbf{x}^\star)] \leq$$

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps II

Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize γ_t):

$$\mathbb{E}\left[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\right] = \frac{\gamma_t}{2} \mathbb{E}\left[\|\mathbf{g}_t\|^2\right] + \frac{1}{2\gamma_t} \left(\mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\right] - \mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\right]\right).$$

"Strong convexity in expectation":

$$\mathbb{E}\left[\mathbf{g}_{t}^{\top}(\mathbf{x}_{t}-\mathbf{x}^{\star})\right] = \mathbb{E}\left[\nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t}-\mathbf{x}^{\star})\right] \geq \mathbb{E}\left[f(\mathbf{x}_{t})-f(\mathbf{x}^{\star})\right] + \frac{\mu}{2}\mathbb{E}\left[\|\mathbf{x}_{t}-\mathbf{x}^{\star}\|^{2}\right]$$

Putting it together (with $\mathbb{E}\left[\|\mathbf{g}_{t}\|^{2}\right] \leq B^{2}$):

$$\mathbb{E}[f(\mathbf{x}_t) - f(\mathbf{x}^{\star})] \leq \frac{B^2 \gamma_t}{2} + \frac{(\gamma_t^{-1} - \mu)}{2} \mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\right] - \frac{\gamma_t^{-1}}{2} \mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\right].$$

Proof continues as for subgradient descent, this time with expectations.

Mini-batch SGD

Instead of using a single element f_i , use an average of several of them:

$$\tilde{\mathbf{g}}_t := \frac{1}{m} \sum_{j=1}^m \mathbf{g}_t^j.$$

Extreme cases:

 $m = 1 \Leftrightarrow \mathsf{SGD}$ as originally defined $m = n \Leftrightarrow \mathsf{full}$ gradient descent

Benefit: Gradient computation can be naively parallelized

Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces the variance. So for larger size of the mini-batch m, $\tilde{\mathbf{g}}_t$ will be closer to the true gradient, in expectation:

$$\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_t - \nabla f(\mathbf{x}_t)\right\|^2\right] =$$

Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces the variance. So for larger size of the mini-batch m, $\tilde{\mathbf{g}}_t$ will be closer to the true gradient, in expectation:

$$\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{t}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{m}\sum_{j=1}^{m}\mathbf{g}_{t}^{j}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right] \\ = \frac{1}{m}\mathbb{E}\left[\left\|\mathbf{g}_{t}^{1}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right] \\ = \frac{1}{m}\mathbb{E}\left[\left\|\mathbf{g}_{t}^{1}\right\|^{2}\right] - \frac{1}{m}\|\nabla f(\mathbf{x}_{t})\|^{2} \le \frac{B^{2}}{m}$$

Using a modification of the SGD analysis, can use this quantity to relate convergence rate to the rate of full gradient descent.

.

Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a subgradient of f_i in each iteration. The update of **stochastic subgradient descent** is given by

```
sample i \in [n] uniformly at random
let \mathbf{g}_t \in \partial f_i(\mathbf{x}_t)
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \mathbf{g}_t.
```

In other words, we are using an unbiased estimate of a subgradient at each step, $\mathbb{E}[\mathbf{g}_t | \mathbf{x}_t] \in \partial f(\mathbf{x}_t).$

Convergence in $\mathcal{O}(1/\varepsilon^2)$, by using the subgradient property at the beginning of the proof, where convexity was applied.

Constrained optimization

For constrained optimization, our theorem for the SGD convergence in $O(1/\varepsilon^2)$ steps directly extends to constrained problems as well.

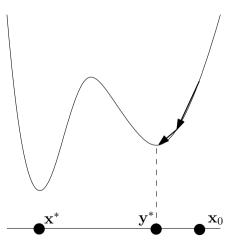
After every step of SGD, projection back to X is applied as usual. The resulting algorithm is called projected SGD.

Chapter 6

Non-convex Optimization

Gradient Descent in the nonconvex world

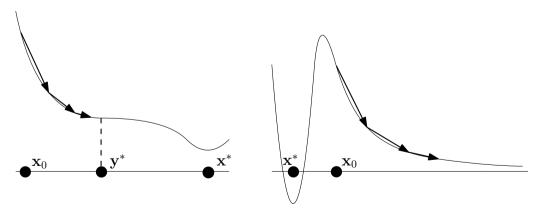
may get stuck in a local minimum and miss the global minimum;



Gradient Descent in the nonconvex world II

Even if there is a unique local minimum (equal to the global minimum), we

- may get stuck in a saddle point;
- run off to infinity;
- possibly encounter other bad behaviors.



Gradient Descent in the nonconvex world III

Often, we observe good behavior in practice.

Theoretical explanations mostly missing.

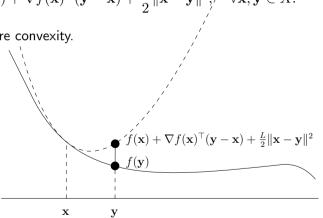
This lecture: under favorable conditions, we sometimes can say something useful about the behavior of gradient descent, even on nonconvex functions.

Smooth (but not necessarily convex) functions

Recall: A differentiable $f : \mathbf{dom}(f) \to \mathbb{R}$ is smooth with parameter $L \in \mathbb{R}_+$ over a convex set $X \subseteq \mathbf{dom}(f)$ if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^{2} \mathbf{y}^{\prime} \quad \forall \mathbf{x}, \mathbf{y} \in X.$$
(1)

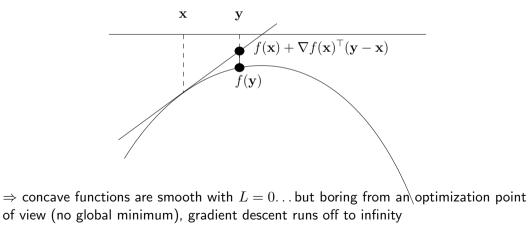
Definition does not require convexity.



Concave functions

f is called **concave** if -f is convex.

For all \mathbf{x} , the graph of a differentiable concave function is below the tangent hyperplane at \mathbf{x} .



Bounded Hessians \Rightarrow smooth

Lemma

Let $f : \operatorname{dom}(f) \to \mathbb{R}$ be twice differentiable, with $X \subseteq \operatorname{dom}(f)$ a convex set, and $\|\nabla^2 f(\mathbf{x})\| \le L$ for all $\mathbf{x} \in X$, where $\|\cdot\|$ is spectral norm. Then f is smooth with parameter L over X.

Examples:

- ▶ all quadratic functions $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$
- $f(x) = \sin(x)$ (many global minima)

Bounded Hessians \Rightarrow smooth II

Proof.

By Theorem **??** (applied to the gradient function ∇f), bounded Hessians imply Lipschitz continuity of the gradient,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \mathbf{x}, \mathbf{y} \in X.$$

To show that this implies smoothness, we use $h(1) - h(0) = \int_0^1 h'(t) dt$ with

$$h(t) := f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \quad t \in [0, 1],$$

Chain rule:

$$h'(t) = \nabla f \left(\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}).$$

Bounded Hessians \Rightarrow smooth III

Proof. For $\mathbf{x}, \mathbf{y} \in X$:

$$f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

Bounded Hessians \Rightarrow smooth III

Proof. For $\mathbf{x}, \mathbf{y} \in X$:

$$f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= h(1) - h(0) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \quad \text{(definition of } h\text{)}$$

$$= \int_{0}^{1} h'(t) dt - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= \int_{0}^{1} \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))^{\top} (\mathbf{y} - \mathbf{x}) dt - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))^{\top} (\mathbf{y} - \mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \right) dt$$

$$= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) dt$$

Bounded Hessians \Rightarrow smooth IV

Proof.

For $\mathbf{x}, \mathbf{y} \in X$:

$$f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

=
$$\int_0^1 \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) dt$$

Bounded Hessians \Rightarrow smooth IV

Proof.

For $\mathbf{x}, \mathbf{y} \in X$:

$$\begin{aligned} f(\mathbf{y}) &- f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \\ &= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) dt \\ &\leq \int_{0}^{1} \left| \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) \right| dt \\ &\leq \int_{0}^{1} \left\| \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right) \right\| \| (\mathbf{y} - \mathbf{x}) \| dt \quad \text{(Cauchy-Schwarz)} \\ &\leq \int_{0}^{1} L \| t(\mathbf{y} - \mathbf{x}) \| \| (\mathbf{y} - \mathbf{x}) \| dt \quad \text{(Lipschitz continuous gradients (??))} \\ &= \int_{0}^{1} Lt \| \mathbf{x} - \mathbf{y} \|^{2} dt \quad = \frac{L}{2} \| \mathbf{x} - \mathbf{y} \|^{2}. \end{aligned}$$

Smooth \Rightarrow **bounded Hessians**?

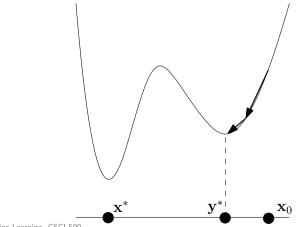
Yes, over any open convex set X (Exercise ??).

Gradient descent on smooth functions

Will prove: $\|\nabla f(\mathbf{x}_t)\|^2 \to 0$ for $t \to \infty...$

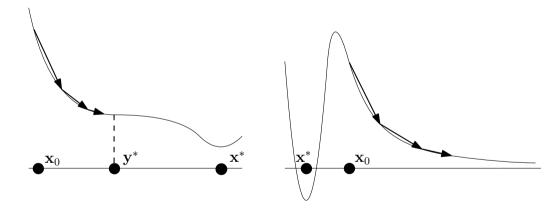
... at the same rate as $f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \to 0$ in the convex case.

 $f(\mathbf{x}_t) - f(\mathbf{x}^{\star})$ itself may not converge to 0 in the nonconvex case:



What does $\|\nabla f(\mathbf{x}_t)\|^2 \to 0$ mean?

It may or may not mean that we converge to a critical point $(\nabla f(\mathbf{y}^{\star}) = \mathbf{0})$



Gradient descent on smooth (not necessarily convex) functions

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that f is smooth with parameter L according to Definition **??**. Choosing stepsize

$$\gamma := \frac{1}{L},$$

gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le \frac{2L}{T} (f(\mathbf{x}_0) - f(\mathbf{x}^*)), \quad T > 0.$$

In particular, $\|\nabla f(\mathbf{x}_t)\|^2 \leq \frac{2L}{T} (f(\mathbf{x}_0) - f(\mathbf{x}^*))$ for some $t \in \{0, \dots, T-1\}$. And also, $\lim_{t\to\infty} \|\nabla f(\mathbf{x}_t)\|^2 = 0$ (Exercise ??).

Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma ??), does not require convexity:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Rewriting:

$$\|\nabla f(\mathbf{x}_t)\|^2 \le 2L \big(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) \big).$$

Telescoping sum:

$$\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le$$

Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma ??), does not require convexity:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Rewriting:

$$\|\nabla f(\mathbf{x}_t)\|^2 \le 2L \big(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) \big).$$

Telescoping sum:

$$\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le 2L \big(f(\mathbf{x}_0) - f(\mathbf{x}_T) \big) \le 2L \big(f(\mathbf{x}_0) - f(\mathbf{x}^\star) \big).$$

The statement follows (divide by T).

No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e. pass a critical point (Exercise **??**).

