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Composite optimization problems

Consider objective functions composed as

f(x) = g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional term, which however
doesn't satisfy the assumptions of niceness which we used in the convergence analysis
so far.

In particular, an important case is when h is not differentiable.
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Idea

The classical gradient step for minimizing g:
. T 1 )
Xi+1 = argmin g(x¢) + Vg(x¢) (y —x¢) + %Hy —x¢]|* .
y

For the stepsize v := % it exactly minimizes the local quadratic model of g at our current iterate xy,

formed by the smoothness property with parameter L.
Now for f = g + h, keep the same for g, and add A unmodified.
. 1
Xp1 o= argmin g(x) + Vg(x:) (v — %) + v - x||” + h(y)
y

1
=argmin —[ly — (x¢ = 7Vg(x0)|* + h(y)
y i

the proximal gradient descent update.
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The proximal gradient descent algorithm
An iteration of proximal gradient descent is defined as
Xt41 = proxy, . (x¢ — YVg(xt)) -

where the proximal mapping for a given function h, and parameter ~v > 0 is defined as

. 1
proxy . (z) := argmin {Q—Hy —z|* + h(y)} .
y g

The update step can be equivalently written as
Xep1 = Xt — VG (X¢)

for Gp, 4(x) := %(x — Proxy, (x — ’ng(x))) being the so called generalized gradient
of f.
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A generalization of gradient descent?

> h = 0: recover gradient descent

> h = tx: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the
convex function

LX:IRd—>IRU+oo

{0 if x € X,
X Lx(X) =

+00  otherwise.

Proximal mapping becomes

. 1 .
prox;, ,(z) = argmin { -~ ly = |2 + 1x(y) } = argmin [ly - ||
y 27 yeX
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Soft Thresholding for /; penalty

Proximal Mapping for /; Regularization: For h(x) = A||x||1, the proximal operator
is given by the soft-thresholding function:

Proxy|.|, v (z) = sign(z) ® max(|z| — A, 0)

where the operation is applied element-wise.

Soft Thresholding Operator

-=- identity Function
— soft-Thresholding (A =1)

proxsy.1,(2)

3
2
1
o
1
2
3
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Iterative Soft Thresholding for Lasso

Lasso regression solves the problem:
(1 2
min { -l Ax = b2 + Alx]: }
x L2
where the /1 penalty promotes sparsity in x.

Proximal Gradient Descent for Lasso:

X, 41 = sign(x; — YA (Ax; — b)) ® max (e — YAT(Ax; — b)| — A, 0)
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Chapter 5

Stochastic Gradient Descent
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Stochastic gradient descent

Many objective functions are sum structured:
1 n
fx) == filx).
i=1

Example: f; is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating V f(x) of a sum-structured function is expensive (sum of n gradients).
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Stochastic gradient descent: the algorithm

choose xy € R,

sample ¢ € [n] uniformly at random

Xe1 o= Xg — VeV fi(%e).

for times t = 0,1,..., and stepsizes y; > 0.

Only update with the gradient of f; instead of the full gradient!
Iteration is n times cheaper than in full gradient descent.

The vector g, := V fi(x;) is called a stochastic gradient.

g: is a vector of d random variables, but we will also simply call this a random variable.
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Unbiasedness

Can't use convexity
flxe) = fF(x) < g (x4 — x)

on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient g; turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, g; is an unbiased estimate of V f(x;):

Elgi[x: =x] =
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Unbiasedness

Can't use convexity

flxe) = fF(x) < g (x4 — x)
on top of the vanilla analysis, as this may hold or not hold, depending on how the
stochastic gradient g; turns out.

We will show (and exploit): the inequality holds in expectation.

For this, we use that by definition, g; is an unbiased estimate of V f(x;):

Blgfx=x] = = Y Vfix) = Vf(x), xR
=1
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The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise ??) yields

E[gtT(x —x")|x¢ =x] =
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The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation
For any fixed x, linearity of conditional expectations (Exercise ?77?) yields

E[gtT(x —x")|xy = x| = E[g|x; = X]T(X —x*) =Vf(x)"(x —x).

Event {x; = x} can occur only for x in some finite set X (x; is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise ??):

]E[gtT(xt — x*)] =
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The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise ?77?) yields

E[gtT(X —x")|xy = x| = E[g|x; = X]T(X —x*) =Vf(x)"(x —x).

Event {x; = x} can occur only for x in some finite set X (x; is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise ??):

E[g;r(xt -x")] = Z E[g:(x — x*)|x¢ = x| prob(x¢ = x)
xeX

= Z Vf(x)T(x —x*) prob(x; = x) = E[Vf(xt)T(xt —x")].

xeX

Hence,
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The inequality f(x;) — f(x*) < g/ (x; — x*) holds in expectation

For any fixed x, linearity of conditional expectations (Exercise ?77?) yields

E[gtT(X —x")|xy = x| = E[g|x; = X]T(X —x*) =Vf(x)"(x —x).

Event {x; = x} can occur only for x in some finite set X (x; is determined by the
choices of indices in all iterations so far). Partition Theorem (Exercise ??):

E[g;r(xt -x")] = Z E[g:(x — x*)|x¢ = x| prob(x¢ = x)
xeX
= Z Vf(x)T(x —x*) prob(x; = x) = E[Vf(xt)T(xt —x")].
xeX
Hence, J convexity

Elg/ (x; —x*)] = E[Vf(x¢) (x; — x*)] > E[f(x) — f(x")].
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Bounded stochastic gradients: O(1/¢?) steps
Theorem
Let f: R? = R be convex and differentiable, x* a global minimum, furthermore,
suppose that ||xo — x*|| < R, and that E[||g||*] < B? for all t. Choosing the constant

stepsize
R
R ——
BVT
stochastic gradient descent yields
T—1
1 RB
— E|f(x¢)]| — f(x") < —.
T g [f( t)] f( ) —= \/T

Same procedure as every week. . . except

P> we assume bounded stochastic gradients in expectation;

» error bound holds in expectation.
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Bounded stochastic gradients: O(1/¢?) steps Il

Proof.
Vanilla analysis (this time, g is the stochastic gradient):

T-1 T—
-2
t=

Taking expectations
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Bounded stochastic gradients: O(1/¢?) steps Il
Proof.
Vanilla analysis (this time, g is the stochastic gradient):

T—1 ,yT
g (x¢ —x") 52\\gt|!2+*HX0—X*H2-
=0

t=

Taking expectations and using “convexity in expectation”:

T-1 T-1 ~ T— 1
E[f(x:) = f(x)] <) Elg/ (x¢ —x)] < o) E[llgl?] + 5 [Ixo — x*|?
2 2y
t=0 t=0 t=0
Y p2 2
< =BT —R .
-2 * 2y
Result follows as every week (optimize ) ... O
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Convergence rate comparison: SGD vs GD

Classic GD: For vanilla analysis, we assumed that |V f(x)||? < B2y for all x € R¢,
where Bgp was a constant. So for sum-objective:

Pswnl' <ot

SGD: Assuming same for the expected squared norms of our stochastic gradients, now
called BZ.p.

1
EZHsz‘(X)”Q < Béep vx

So by Jensen's inequality for ||.||

2
2
LY V)| < 2 VG| ~ Bl
» B2, can be smaller than B2.p, but often comparable.
Very similar if larger mini-batches are used.

2
> B2~
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Tame strong convexity: O(1/¢) steps
Theorem

Let f : RY — R be differentiable and strongly convex with parameter ji > 0; let x* be
the unique global minimum of f. With decreasing step size

2
T W+ 1)

stochastic gradient descent yields

T 2
E[f<T(T2+ ) ;t : xt> - f(x*)} < u(;BJr 0’

where B2 := maxthl ]E[ HgtHZ]-

Almost same result as for subgradient descent, but in expectation.
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Tame strong convexity: O(1/¢) steps Il
Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize ~;):

e/ (x —x)] = B[] + 5 (BIxe = x] ~ Ellxier =[]

“Strong convexity in expectation”:

Elg/ (x; —x")] =
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Tame strong convexity: O(1/¢) steps Il
Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize ~;):

e/ (x —x)] = B[] + 5 (BIxe = x] ~ Ellxier =[]

“Strong convexity in expectation”:
Elg/ (x; —x")] = B[V/f(x))" (ot —x")] 2 E[f(x)) — f(x")] + g]E[th - x|
Putting it together (with E[||g:?] < B?):

Elf(x:) = f(x")] <
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Tame strong convexity: O(1/¢) steps Il
Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize ~;):

e/ (x —x)] = B[] + 5 (BIxe = x] ~ Ellxier =[]

“Strong convexity in expectation”:
Elg (x —x)] = E[Vf(x) " (x; = x*)] > E[f(x:) = f(x")] + g]E[th —x*||?]
Putting it together (with E[||g:?] < B?):
2 -1 _ —1
E[f(x) — f(x)] < B+ OB fx, — x| ] = % B[ xer —x**].

Proof continues as for subgradient descent, this time with expectations. [
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Mini-batch SGD

Instead of using a single element f;, use an average of several of them:
1 &
5, J
gt - m ;1 8t -

Extreme cases:
m = 1 < SGD as originally defined
m = n < full gradient descent

Benefit: Gradient computation can be naively parallelized
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Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g; will be closer to the true
gradient, in expectation:

Bf|& - vrea|] =
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Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces
the variance. So for larger size of the mini-batch m, g; will be closer to the true
gradient, in expectation:

vl ellhzre v
- ~E|llg; — Vf(x)l
= LE[lglP] - LIVFex))® < B

Using a modification of the SGD analysis, can use this quantity to relate convergence
rate to the rate of full gradient descent.
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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a
subgradient of f; in each iteration. The update of stochastic subgradient descent is
given by

sample ¢ € [n] uniformly at random
let g, € Of;(x¢)

Xt+1 = Xt — Vt8t-

In other words, we are using an unbiased estimate of a subgradient at each step,
Elg:|x:] € 0f (x).

Convergence in O(1/¢2), by using the subgradient property at the beginning of the
proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD convergence in O(1/£?) steps
directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting
algorithm is called projected SGD.
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Chapter 6

Non-convex Optimization
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Gradient Descent in the nonconvex world

> may get stuck in a local minimum and miss the global minimum;
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Gradient Descent in the nonconvex world I
Even if there is a unique local minimum (equal to the global minimum), we

> may get stuck in a saddle point;
» run off to infinity;
» possibly encounter other bad behaviors.

|
|
I * *
Xo Yy X X X0
* ¢
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Gradient Descent in the nonconvex world 11

Often, we observe good behavior in practice.
Theoretical explanations mostly missing.

This lecture: under favorable conditions, we sometimes can say something useful about
the behavior of gradient descent, even on nonconvex functions.
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Smooth (but not necessarily convex) functions

Recall: A differentiable f: dom(f) — R is smooth with parameter L € R, over a
convex set X C dom(f) if .

fy) < fx)+VIE) (v —x) + gnx - yHQ,/ vx,y € X. (1)

Definition does not require convexity. /
\
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Concave functions
f is called concave if —f is convex.

For all x, the graph of a differentiable concave function is below the tangent
hyperplane at x.

= concave functions are smooth with L = 0. .. but boring from an\optimization point
of view (no global minimum), gradient descent runs off to infinity
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Bounded Hessians = smooth

Lemma

Let f : dom(f) — R be twice differentiable, with X C dom(f) a convex set, and
|V2f(x)|| < L for all x € X, where ||-|| is spectral norm. Then f is smooth with
parameter L over X.

Examples:

» all quadratic functions f(x) =x'Ax+b'x +c
» f(x) =sin(z) (many global minima)
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Bounded Hessians = smooth |l

Proof.
By Theorem ?? (applied to the gradient function V f), bounded Hessians imply

Lipschitz continuity of the gradient,
IVIx) = Vil <Llix-yll, xyeX
To show that this implies smoothness, we use h(1) fo B (t)dt with
h(t) == f(x+tly —x)), tel0,1],

Chain rule:
(1) = Vf(x+ty —x) (y—x).
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Bounded Hessians = smooth Il

Proof.
For x,y € X:

Fly) = f(x) = Vi) (y —x)
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Bounded Hessians = smooth Il

Proof.
For x,y € X:

f()f() Vi)' (v - x)
h(1) -

= h(0) () (y —x) (definition of h)

- /h’ Ydt —Vf(x) (y —x)
0
1

= | Vit ) (y = x)dt — Vf(x) " (y — %)
1

- /0 (Vix+ty—x) (y —x) = VF(x) (y —x))dt
1

= | (Vfx+tly ~ Vi) (v - x)dt

0
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Bounded Hessians = smooth IV

Proof.
For x,y € X:

fly)— f(x) = Vix) " (y —x)
- / (VF(x+ty — %)) — V() (y = x)dt
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Bounded Hessians = smooth IV

Proof.
For x,y € X:

fly) = f(x) = Vix) " (y —x)
1
- / (VF(x+tly —x)) = VF(x)) (y — x)dt

1
< [ 1Tty =) = ) Ty =l
1
< /0 H (Vf(x +t(y —x)) — Vf(x)) || |(y — x)||dt (Cauchy-Schwarz)
< /1 L|it(y —x)| |[(y —x)||dt (Lipschitz continuous gradients (??))
0

! 2 L 2
= Lt||x —yl||” dt :5\\X—YH :
0
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Smooth = bounded Hessians?

Yes, over any open convex set X (Exercise 77).
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Gradient descent on smooth functions
Will prove: |V f(x;)||? — 0 for t — oco. ..

...at the same rate as f(x;) — f(x*) — 0 in the convex case.

f(x¢) — f(x*) itself may not converge to 0 in the nonconvex case:
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What does ||V f(x;)||* — 0 mean?

It may or may not mean that we converge to a critical point (Vf(y*) = 0)

o ---
<

»

»

»

o

X0
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Gradient descent on smooth (not necessarily convex) functions

Theorem
Let f : R¢ — R be differentiable with a global minimum x*; furthermore, suppose that
f is smooth with parameter L according to Definition ??. Choosing stepsize

1
’}/'_ L7

gradient descent yields

%ZHVf (o)l < *(f(XO)—f(X*)), T >0.
In particular, ||V f(x)|[* < 3 (f(x0) — f(x*)) for some t € {0,..., T — 1},
2

And also, limy_, ||V f(x¢)

= ( Exerc:se 7?).
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Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma ?7), does not require convexity:

Floxrn) < Flox) = 5 IVFGIP, 120

Rewriting:
IVFx)? < 2L(f(xt) = f(xe41))-

Telescoping sum:

*ﬂ

HVf(Xt)II2

~+
Il
o
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Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma ?7), does not require convexity:

Floxrn) < Flox) = 5 IVFGIP, 120

Rewriting:

IV f(xe)|I” < 2L(f(xe) — f(xe41))-

Telescoping sum:

*ﬂ

HVf(Xt)II2 < 2L(f(x0) — f(xr)) < 2L(f(x0) — f(x7)).

t

Il
=)

The statement follows (divide by T'). O
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No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e.
pass a critical point (Exercise ?7).

X X/ y* X y*X/ X X/ — y*

x' =x—-9Vf(x),y<1/L overshooting may happen with v = 1/L
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