CSCI 699: Privacy-Preserving Machine Learning

Sai Praneeth Karimireddy

Agenda

What Privacy

04

Privacy in ML

Course Logisitics

- Fri 1pm to 4:20pm.
- Room currently DMC 200. **Might change** keep an eye out! WPH 102
- Course website: <u>spkreddy.org/ppmlfall2024.html</u>
- Email: karimire@usc.edu (add CSCI 699 in subject)
- Anonymous feedback: <u>https://forms.gle/EqRmkZhgMrtgDh2o9</u>

Course overview

- What even is privacy?
- How to know if my data was used to train ChatGPT?
- How can you train a model while guaranteeing the privacy of the data?
- You say your training is safe, but how can I verify?
- I still don't trust you with my data. Now what?
- What about copyright?

Disclaimer

- The material we cover will be hard.
- **Diverse** topics and techniques, requires mathematical maturity. • probability
 - linear algebra
 - machine learning
- Cutting edge of ML research.
- Ideal outcome: you find a new question you are excited about and write a NeurIPS/ICML workshop-level paper.

Grading

- 3 Assignments: **30**%
 - short: checking your understanding of the core concepts
- Presentations: **25**%
 - 20mins presentation
 - Pick 1 paper from list subset of additional readings.
 - Pick any date after the day of topic.
 - Signup sheet will be sent out eod. First come first serve. Sign up by Oct 1.
- Report: **30**% Due exam day, more details next.
- Discussion: 15% more details next.

Report: 30%

Option 1

- Team up with others who signed up for the same topic - 1 to 3.
- Teach each other your papers and related background.
- Write up a 4 page report. Formatting instructions to follow.

Option 2

• Team up with 2-3 others.

 Come up with an research question (based on what you've read or otherwise)

• Setup a meeting to get my feedback before Oct 15.

• Write up a 4 page report.

Discussion: 15%

Before start of class of presentation, submit 1 paragraph per paper being presented from any of the following perspectives:

- **Reviewer #3**: One really good reason and one bad reason why this paper should have been rejected. <u>NeurIPS guidelines</u>
- Industry practitioner: how will you make a great product out of this paper?
- **Researcher**: abstract of an impactful followup work

Agenda

01

Logistics

02

Why Privacy

03

What Privacy

04

Privacy in ML

The Economist

MAY 678-12TH 2017

Theresa May v Brussels Ten years on: banking after the crisis South Korea's unfinished revolution Biology, but without the cells

The world's most valuable resource

Tesla, Uber, Dominos are data companies.

Data and the new rules of competition

"The world's most valuable resource is no longer oil, but data. " - Economist, 2017

src: @perfectloop used with permission

Why privacy?

Data collected by 20 period tracking apps popular in the US

Surfshark 2022

 Menstrual tracking apps track a ton of data.

 They, like many other apps, sell data to data brokers.

• Can infer pregnancy and abortions. Illegal in a large part of US.

• "Wrong" according to who?

<u>NY Times 2019</u>

- Apps also sell your location to data brokers
- Anyone can buy it. Lots of people do.
- Easily identify protestors and trace people to homes
- Senior Defense Department official and his wife identified at the Women's March.

Captured

Captured

• You may be very careful. But doesn't matter.

 23AndMe has genetic information of 15 million people.

• National DNA Index (NDIS) contains about the same, but only of offenders.

FBI wanted poster, CBC News 2018.

Captured

FBI wanted poster, CBC News 2018.

Captured

• Bayes time!

- Probability of 23AndMe being involved in a crime is 1%
- Probability of NDIS being involved in a crime is 10%
- DNA test is True positive = 90%, False positive = 1%
- Test from NDIS said yes vs from 23AndMe?

Why privacy? Summary

EU Law analysis 2020

You are being looked at, but you can't look back.

 If a flag is raised, very expensive to deal with.

 You will change your behavior to be overly cautious and not raise flags => "chilling effect"

• Privacy is about power-imbalance.

Privacy is also BIG BUSINESS

PRVACY CONVENIENCE DuckDuckGo Goode

- If you don't trust Google, you may start using alternatives
- Google will lose out!
- Lots of effort in ensuring baseline trust and privacy.

Privacy is also BIG BUSINESS

Privacy is also BIG BUSINESS

HIPAA Violation Penalty Tiers

- HIPAA violation fines of \$5 million in 2023
- 2022 GDPR fines were \$2 billion!

But what is "privacy"?

"Data People" by Jamillah Knowles

But what is "privacy"?

"Data People" by Jamillah Knowles

• "The right to be let alone" - Warren II & **Justice Louis Brandeis.**

• To exercise your other rights freely without coercion, influence, or persuasion.

• No really. what is privacy?

Agenda

Logistics

02

Why Privacy

03

What Privacy

04

Privacy in ML

De-identification

A Name	Licence details
C 2 Phone Number	VIN (Vehicle Identification Number)
Dates (admission date, discharge date, appointment date etc.)	Identifiers in Medical devices (Pacemaker)
Fax details	(13) Website URLs
5 Email ID	P Address
8 SSN (Social Security Number)	Biometrics (Fingerprint)
The MRN (Medical Record Number)	Full-face photographs or images with differentiators (facial scars, moles etc.)
+ 8 HPBN (Health Plan Beneficiary Number)	Any other unique identifiers
Medical Certificates	Address (if it has information on the city, street, and house number)

• Remove "sensitive" and "private" attributes.

• HIPAA identifies 18 attributes which if present would make the data PHI: **Private Health Information.**

• Note number 17

De-identification

• A lot of work!

• But are we good?

De-identification

Latanya Sweeney 1997: 87% of the U.S. Population are uniquely identified by {date of birth, gender, ZIP}

Bill Weld (governor): she identified his medical records and mailed them to him.

K-anonymity

Sweeney 1997: 87% of the U.S. Population are **uniquely identified by {date of birth, gender, ZIP}**

What if there were 10 others who had the exact same attributes as Bill?

K-anonymity

Name	DoB	Gender	Height (cm)	Weight (kg)	Address	Disease
Jenna Wilson	1949-04-23	Male	166	117	6639 Mayo Crescent Suite 839, South Austin, VT 27102	Heart Disease
Anita Garcia	1950-02-02	Male	152	75	9674 Ann Ways, Fullerborough, UT 74286	Asthma
Sheila Ramirez	1980-08-04	Female	175	114	39357 White Island Suite 518, Kathystad, LA 31540	Diabetes
Ryan Jensen	1998-03-10	Male	174	94	31039 Duncan Glens Suite 244, South Annahaven, CA 38497	Heart Disease
Edward Lewis	1974-11-01	Male	157	88	USNS Butler, FPO AP 27077	Asthma
Jared Knight	1957-08-13	Female	183	99	860 Nichols Summit Suite 235, North Tina, CA 24369	Obesity

Definition [Sweeny 1998]: For every row in the database, there should be (k-1) others with the exact same attributes.

K-anonymity: supression

Name	DoB	Gender	Height (cm)	Weight (kg)	Address	Disease
Jenna Wilson	1949-04-23	Male	166	117	6639 Mayo Crescent Suite 839, South Austin, VT 27102	Heart Disease
Anita Garcia	1950-02-02	Male	152	75	9674 Ann Ways, Fullerborough, UT 74286	Asthma
Sheila Ramirez	1980-08-04	Female	175	114	39357 White Island Suite 518, Kathystad, LA 31540	Diabetes
Ryan Jensen	1998-03-10	Male	174	94	31039 Duncan Glens Suite 244, South Annahaven, CA 38497	Heart Disease
Edward Lewis	1974-11-01	Male	157	88	USNS Butler, FPO AP 27077	Asthma
Jared Knight	1957-08-13	Female	183	99	860 Nichols Summit Suite 235, North Tina, CA 24369	Obesity

K-anonymity: generalization

DoB	Gender	Height (cm)	Weight (kg)	Disease
1949-04-23	Male	166	117	Heart Disease
1950-02-02	Male	152	75	Asthma
1980-08-04	Female	175	114	Diabetes
1998-03-10	Male	174	94	Heart Disease
1974-11-01	Male	157	88	Asthma
1957-08-13	Female	183	99	Obesity

K-anonymity: generalization

Age	Gender	Height (cm)	Weight	Disease
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma
25-45	Female	160-180	Normal	Diabetes
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma
65+	Female	180-200	Overweight	Obesity

K-anonymity: outlier removal

Age	Gender	Height (cm)	Weight	Disease
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma
25-45	Female	160-180	Normal	Diabetes
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma
65+	Female	180-200	Overweight	Obesity

Satisfies 2-anonymity

K-anonymity

- are Strava heatmaps deidentified?
- Do they satisfy k-anonymity?
- What went wrong?

Fitness tracking app Strava gives away location of secret US army bases

used to pinpoint overseas facilities

as row deepens

			-

Strava. Photograph: Strava Heatmap

- Data about exercise routes shared online by soldiers can be
- Latest: Strava suggests military users 'opt out' of heatmap

A military base in Helmand Province, Afghanistan with route taken by joggers highlighted by

l-diversity

Ashwin Machanavajjhala Johannes Gehrke Daniel Kifer Muthuramakrishnan Venkitasubramaniam Department of Computer Science, Cornell University {mvnak, johannes, dkifer, vmuthu}@cs.cornell.edu

Definition: For each set of attributes, make sure there are at diverse (least I) sensitive attributes.

ℓ -Diversity: Privacy Beyond k-Anonymity

l-diversity

Age	Gender	Height (cm)	Weight	Disease
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma
45-65	Male	160-180	Normal	Heart Disease
45-65	Male	140-160	Normal	Asthma

Definition: For each set of attributes, make sure there are at diverse (least I) sensitive attributes.

Is our 2-anonymous table 2-diverse? Can we make it?

Lots of back and forth

t-Closeness: Privacy Beyond *k*-Anonymity and ℓ -Diversity

Ninghui Li Tiancheng Li Department of Computer Science, Purdue University {ninghui, li83}@cs.purdue.edu Suresh Venkatasubramanian AT&T Labs – Research suresh@research.att.com

Hiding the Presence of Individuals from Shared Databases

M. Ercan Nergiz CS Dept., Purdue University 305 N. University Street West Lafayette, Indiana, 47907-2107 mnergiz@cs.purdue.edu Maurizio Atzori¹ KDD Laboratory, ISTI-CNR Area della ricerca di Pisa via G. Moruzzi 1 56124 Pisa, Italy atzori@di.unipi.it

Christopher W. Clifton CS Dept., Purdue University 305 N. University Street West Lafayette, Indiana, 47907-2107 clifton@cs.purdue.edu

•••

Lots of back and forth. even recently. privacy is HARD.

[Submitted on 6 Oct 2020 (v1), last revised 24 Feb 2021 (this version, v2)]

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Yangsibo Huang, Zhao Song, Kai Li, Sanjeev Arora

InstaHide Disappointingly Wins Bell Labs Prize, 2nd Place

by Nicholas Carlini 2020-12-05

Is Private Learning Possible with Instance Encoding?

Nicholas Carlini ncarlini@google.com

Somesh Jha jha@cs.wisc.edu

Saeed Mahloujifar sfar@princeton.edu

Shuang Song shuangsong@google.com

Abhradeep Thakurta athakurta@google.com

Samuel Deng sd3013@columbia.edu

Sanjam Garg sanjamg@berkeley.edu

Mohammad Mahmoody mohammad@virginia.edu

> Florian Tramèr tramer@cs.stanford.edu

Differential Privacy: next week

Upholding our Promise: Today and Tomorrow

We cannot merely consider privacy threats that exist today.

We must ensure that our disclosure avoidance methods are also sufficient to protect against the threats of tomorrow!

Shape your future START HERE >

Agenda

Logistics

02

Why Privacy

03

What Privacy

04

Privacy in ML

Lots of models being released

Extracting data from ML models

LONG LIVE THE REVOLUTION. OUR NEXT MEETING WILL BE AT THE DOCKS AT MIDNIGHT ON JUNE 28 TAB

AHA, FOUND THEM!

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

Extracting data from ML models

Figure 1: Our extraction attack. Given query access to a neural network language model, we extract an individual person's name, email address, phone number, fax number, and physical address. The example in this figure shows information that is all accurate so we redact it to protect privacy.

Matthew Jagielski⁴ Nicholas Carlini¹ Florian Tramèr² Eric Wallace³ Ariel Herbert-Voss^{5,6} Katherine Lee¹ Tom Brown⁵ Adam Roberts¹ Dawn Song³ Úlfar Erlingsson⁷ Alina Oprea⁴ Colin Raffel¹ ¹Google ²Stanford ³UC Berkeley ⁴Northeastern University ⁵OpenAI ⁶Harvard ⁷Apple

Extracting Training Data from Large Language Models

ML attack taxonomy

Threat model [Cristofaro 2020]

Kinds of privacy attacks in ML

- White-box vs black-box: what level of access do you have?
- Training time vs. test time attacks: when does the attack take place?
- What do you want to steal?

- Active vs. passive: how much
 - influence do you have?
 - o model architecture?
 - o model parameters?
 - o reconstruct training data?
 - o infer attribute of a datapoint?

Model inversion

- confident on an image it has seen in training
- Idea: model will be more • optimize over **x** such that **y_label** is high.

 $\min \ell(f(x), y)$ \mathcal{X}

Model inversion

See jupyter notebook.

