CSCI 699: Privacy Preserving Machine Learning - Week 11 Privacy in Federated Learning

Sai Praneeth Karimireddy, Nov 15 2024.

Recap: Federated Learning admin client devices federated training

Recap: Federated Learning

- We can invert gradients to recover the training data.
- Recovering is easier with smaller batch size vs. larger batch sizes.
- If the server is adversarial, can also insert "traps" into the model sent out to the clients. But, this is less likely - may be easy to detect.

i 🕰 🔊 🐜 🖉 1 😒 😂 🕅 🎎 63 30 🚳 🎬 🚳 🌈 🐉 🐼 💦 ன 😂 💸 🔊 Re Re Re Ma D. Sy Re N 💥 😥 🖼 🏬 🎎 SS 🚵 📶 🕺 🕅 2 **6 9** 8 8 willow tree table tangaroo telephone bed motorcycle butterfly seal bear tiger

How to Make Federated Learning Private? Confidential Computing

- Idea 1: Use confidential computing at server.
- Run the FL aggregation and add DP noise within TEE.
- Pro: Gives local-DP like privacy/ security guarantees at the cost of central-DP. Server can be adversarial.
- Con: Need a trusted TEE & verify attestation every round.

How to Make Federated Learning Private? **Secure Aggregation**

- **Idea 2:** Just ensure server never sees "individual client" updates
 - larger batch
 - hides who sent what
- Use Multi-Party-Copmutation (MPC) to perform secure aggregation.
- Server only sees the aggregate, never individual updates.
- Typically assume server is honest but curious.

FL with SecAgg

Scalable Training communication efficiency

[McMahan et al. 2016]

Clients (MSF mobiles or cancer registries)

[McMahan et al. 2016]

Iteratively in each round,

Copy latest model

[McMahan et al. 2016]

In each round,

Update model using local data and compute

[McMahan et al. 2016]

In each round,

Aggregate models to get new model.

Repeat.

Distributed training

 $L_1(\mathbf{X})$

 $L_2(\mathbf{x})$

$\min L(x) = \frac{1}{m} \sum_{i} L_{i}(x)$

distributed stochastic optimization

11

Distributed training: SGD?

 $g_1(x)$

 $L_2(\mathbf{x})$

Compute local stochastic gradient and average them.

$$x \leftarrow x - \gamma rac{1}{m} \sum_i g_i(x)$$

Excruciatingly slow! :(

Distributed training: SGD?

Single GPU

computation per round	1ms	1ms
communication per round	1ms	1s
training time	1 hr	5 days!

Collaboration VS. **USA & Switzerland**

Communication-efficiency: infrequent synchronization

FedAvg [McMahan et al. 2016]

Run **1k** SGD steps each round, before communicating.

Communication-efficiency: infrequent synchronization

$y_i = y_i - \eta g_i(y_i)$ biased

Clients drift far from each other due to data heterogeneity.

[SCAFFOLD - Karimireddy et al. ICML 2020]

Communication-efficiency: infrequent synchronization

$$y_i = y_i - \eta(g_i(y_i) + c$$

Use history to compute correction.

[SCAFFOLD - Karimireddy et al. ICML 2020]

Infrequent synchronization

$y_i = y_i - \eta(g_i(y_i) + c - c_i)$

Theorem [Karimireddy et al. 2020]

SCAFFOLD converges with (nearly) optimal communication complexity.

[SCAFFOLD - Karimireddy et al. ICML 2020]

Communication rounds -->

Connections with variance reduction, operator splitting, ...

Many many extensions...

Mime: Extensions using Adam, etc. Train-Convexify-Train: Approximate DL using NTK

[Karimireddy et al. NeurIPS 2021] [Yu, Wei, Karimireddy et al. NeurIPS 2022]

Neoadjuvant chemotherapy (NACT) for triple-negative breast cancer (TNBC)

"Scaffold is the most promising collaborative strategies [sic]"

- Terrail et al. [Nature Medicine 2023]

Idea 2: Compressed Communication

GPT-2 is 5GB!

Send only the *most important* parts. E.g. sign, top-k, low-rank, ...

Use *error-feedback* to correct for bias.

Idea 2: Compressed Communication

compressed update path

error keeps accumulating :(

[Karimireddy et al. ICML 2019], [Stich & Karimireddy JMLR 2020]

Compression w/ Error feedback

add the error from previous round back into next round before compressing.

Theorem (Informal):

The asymptotic rate of convergence of EF-SGD is the same as SGD.

[Karimireddy et al. ICML 2019], [Stich & Karimireddy JMLR 2020]

Compression w/ Error feedback

Theorem (Informal):

More concretely, for any δ -approximate compressor:

$$\mathbb{E}\left[\|\nabla f(x_t)\|^2\right] \le \mathcal{O}\left(\frac{\sigma^2}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{1}{\delta T}\right)$$

The asymptotic rate of convergence of EF-SGD is the same as SGD.

SGD rate

_ower order dependence

[Karimireddy et al. ICML 2019], [Stich & Karimireddy JMLR 2020]

Which compressor to use?

- Needs to satisfy some key properties:
 - Compatibility with all-reduce
 - Cheap to compute on GPU
 - Have a good compressor (large δ)

PowerSGD Results

		Test accuracy	Sent/epoch	All-reduce	Time/batc
No compr	ression	94.3% — H	1023 MB	✓	312 ms ⊢
Medium	Rank 7	94.6% — H	24 MB	✓	285 ms
	Random Block	93.3% —	24 MB	\checkmark	243 ms 🛏
	Random K	94.0% — H —	24 MB	\checkmark	540 ms 🛏
	Sign+Norm	93.9% — H	32 MB	X	429 ms ⊨
	Тор К	94.4% ————————————————————————————————————	32 MB	×	444 ms ⊢
High	Rank 2		8 MB	✓	239 ms ⊨
	Random Block	87.8% ———	8 MB	\checkmark	240 ms 🛏
	Random K	92.6% +	8 MB	\checkmark	534 ms ⊢
	Тор К	93.6% — H —	8 MB	X	411 ms ⊨

- If not compatible with all-reduce, time/batch (throughput) is bad

Random compression is compatible with all-reduce but affects convergence.

[Vogels, Karimireddy, et al. NeurIPS 2019]

Meta Accelerating PyTorch DDP by 10X With PowerSGD

♥ f in Ø ∷ …

Authors: Yi Wang (Facebook AI), Alex Iankoulski (Amazon AWS), Pritam Damania (Facebook AI), Sundar Ranganathan (Amazon AWS)

of GPUs

DALL·E: Creating **Images from Text**

We've trained a neural network called DALL·E that creates images from text captions for a wide range of concepts expressible in natural language.

January 5, 2021 27 minute read

PowerSGD:

Every time you do all-reduce, the gradients are communicated from & to all GPUs. It is a considerable bottleneck. DALLE used nifty gradient compression (86%) from the PowerSGD paper to make this work. 15/n arxiv.org/abs/1905.13727

Compression Scheme	Compression Rate
FP16	2
PowerSGD	984
FP16 + PowerSGD	1,969
Batched PowerSGD	1,946
FP16 + Batched PowerSGD	3,892

Compression for Privacy

Idea 2: Compressed Communication

We are communicating much less.

Intuitively, this must also mean more privacy.

Indeed true! We will see formal analysis soon.

Compression for privacy

Table 1: Comparison of the communication costs of ℓ_2 mean estimation under local, distributed, central, and shuffle DP (with δ terms hidden). Compared to local DP, we see that error under central DP decays much faster (e.g., $1/n^2$ as opposed to 1/n); compared to distributed DP with secure aggregation, our schemes achieve similar accuracy but saves the communication cost by a factor of n.

Communication (bits)	$\ell_2 \mathrm{error}$
$\Theta(\lceil \varepsilon \rceil)$	$\Theta\left(rac{d}{n\min(\varepsilon^2,\varepsilon)} ight)$
$ ilde{O}\left(n^2\min\left(arepsilon,arepsilon^2 ight) ight)$	$\Theta\left(rac{d}{n^2\min(arepsilon^2,arepsilon)} ight)$
$ ilde{O}\left(n\min\left(arepsilon,arepsilon^2 ight) ight)$	$O\left(\frac{d\log d}{n^2\min(\varepsilon^2,\varepsilon)} ight)$
$ ilde{O}\left(n\log(d)\min\left(arepsilon,arepsilon^2 ight) ight)$	$O\left(\frac{d}{n^2\min(\varepsilon^2,\varepsilon)}\right)$

[Chen et al. 2023]

