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CSCI 699: Privacy Preserving 
Machine Learning - Week 2
Differential Privacy

 



Quantifying Privacy 
Leakage



Last week recap

• We saw many definitions of privacy


• De-identification / suppression


• K-anonymity


• L-diversity


• We saw none of them really protected privacy and were easily broken


• Hinted at a more widely accepted definition.



Last week takeaways
Requirements for privacy definition

• Unaffected by auxiliary information: we 
should not be able to combine extra 
data to undo privacy.

• Composition: We should understand 
what happens when data is continuously 
released.

• Today we will come with such a privacy 
definition.



Goals of PPML

Data users

…

Algorithm

Data providers

queries

answers

• Each answer leaks some information. How to 
quantify?


• How to balance usefulness of answers vs. 
privacy being leaked?



Quantifying Privacy Leakage
Attempt 1

• Bayesian version: the posterior and prior are identical

Absolute Privacy: quantify total information leaked

“An answer to a query is private if the response 
reveals no more than was already known about the 
individuals in the data”



Quantifying Privacy Leakage
Attempt 1

…
Algorithm

Data providers Data users

Algorithm

Data providers

queries

answers

World 1: H0 

World 2: H1 

We are either in world 
1 or world 2. The adv 
cannot tell which 
world we are in.

…

…



Quantifying Privacy Leakage
Attempt 1

• Problem 1: Impossible to reveal anything useful about data since any useful 
answer will provide some previously unknown information.

Absolute Privacy: quantify total information leaked

“An answer to a query is private if the response 
reveals no more than was already known about the 
individuals in the data”



Quantifying Privacy Leakage
Attempt 1: Problems

• Problem 2: What I know before changes with auxiliary information. 


• Did the model leak information about Bob?


• Bob is a smoker, but his data was not used to train the model.

• The model said smokers have higher risk of disease.

• Bob’s insurance premiums were raised.

Absolute Privacy: quantify total information leaked

“An answer to a query is private if the response 
reveals no more than was already known about the 
individuals in the data”



Quantifying Privacy Leakage
Attempt 1: Problems

…
Algorithm

Data providers Data users

Algorithm

Data providers

queries

answers

World 1: H0 

World 2: H1 

Any information 
about the distribution 
reveals which world 
we are in.



Quantifying Privacy Leakage
Attempt 1: Problems

• Problem 2: What I know before changes with auxiliary information. 


• We want to safeguard individual information (privacy) while revealing 
distributional/aggregate information (utility)

Absolute Privacy: quantify total information leaked

“An answer to a query is private if the response 
reveals no more than was already known about the 
individuals in the data”



Quantifying Privacy Leakage
Attempt 2

Relative Privacy: quantify new information leaked

“An analysis of a dataset is private if what can be learned about an 
individual in the dataset is not much more than what would be learned 
if the same analysis was conducted without them in the dataset”



Quantifying Privacy Leakage
Attempt 2

…
Algorithm

Data providers Data users

Algorithm

Data providers

queries

answers

World 1: H0 

World 2: H1 

• In world 2 only Bob 
is removed/
replaced. 


• Now from the 
answer, how easily 
can guess the 
correct world?

…

…

…



Quantifying Privacy Leakage
Attempt 2

• Intuition: Whether Bob is present in the data or not, the answer should not 
change much.


• Then, from looking at the answer, we will not learn whether Bob was present in 
the data or not.


• Gives Bob plausible deniability.

Relative Privacy: quantify new information leaked

“An analysis of a dataset is private if what can be learned about an 
individual in the dataset is not much more than what would be learned 
if the same analysis was conducted without them in the dataset”



Aside: how is Putin’s popularity calculated?
Plausible deniability as privacy



Aside: how is Putin’s popularity calculated?
List Experiment

• Split users randomly into two 
groups


• Design a set of options very 
similar to the one you actually 
care about


• To control only ask about the 
rest. To the treatment include 
your option.


• Does this confer plausible 
deniability?

Chapkovski and Schaub 2022. “Do Russians tell the truth when they say they support the war in Ukraine? Evidence from a list experiment” LSE Blog

https://blogs.lse.ac.uk/europpblog/2022/04/06/do-russians-tell-the-truth-when-they-say-they-support-the-war-in-ukraine-evidence-from-a-list-experiment/


Aside: how is Putin’s popularity calculated?
List Experiment

Chapkovski and Schaub 2022. “Do Russians tell the truth when they say they support the war in Ukraine? Evidence from a list experiment” LSE Blog

https://blogs.lse.ac.uk/europpblog/2022/04/06/do-russians-tell-the-truth-when-they-say-they-support-the-war-in-ukraine-evidence-from-a-list-experiment/


Quantifying Privacy Leakage
Attempt 2

• Question: Can a deterministic algorithm be private?


• What if Bob is the only data point? Then can easily reverse-engineer Bob’s 
data. 

• Only randomized algorithms can be private.

Relative Privacy: quantify new information leaked

“An analysis of a dataset is private if what can be learned about an 
individual in the dataset is not much more than what would be learned 
if the same analysis was conducted without them in the dataset”

min
x

ℓ( f(x), y)



Membership Inference
As a definition of privacy

…
Algorithm

Data providers Data users

Algorithm

Data providers

queries

answers

World 1: H0 

World 2: H1 

• In world 2 only Bob 
is removed/
replaced. 


• Now from the 
answer, how easily 
can guess the 
correct world?


• Can have false 
positives, false 
negatives…

…

…



Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber

Membership Inference
Quantifying attack success

• Suppose we run 
multiple runs


• Count the number 
of times the adv 
guesses H0 vs H1 
correctly


• We can compute 
Type I and Type II 
errors.

We get a point.



Type II error 
we guess member when 

non-member

Membership Inference
Tradeoff curve

• But sometimes we care 
asymmetrically


• E.g. its important not to 
miss anyone e.g. 
sending cat ads to pet 
owners 


• Not ok if we are 
accusing them of a 
crime

Strategy

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Membership Inference
Comparing tradeoff curves

• Strategy 1 is better than 
Strategy 2 if the curve is 
uniformly above.


• Lower curve means 
we’ve found more 
privacy leakage

Type II error 
we guess member when 

non-member

Better strategy 2

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Membership Inference
Optimal tradeoff curve

• There is an optimal 
strategy


• use this to quantify 
privacy leakage


• What if no single 
strategy is best?


• Neyman–Pearson 
lemma guarantees 
existence of uniformly 
most powerful test.

Type II error 
we guess member when 

non-member

Unknown optimal strategy

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Membership Inference
Privacy from tradeoff curve

• Use optimal strategy to 
quantify privacy


• But empirical tests only 
give an upper-bound


• Need theory to give 
lower-bound

Type II error 
we guess member when 

non-member

Unknown optimal strategy

lower bound 
from theory

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Differential Privacy



Differential Privacy

2006



Differential Privacy
Threat model

• Let  be a the domain of training data


• A dataset  is a multiset of n records/rows of 


•  (sensitive data)             algorithm              (answers)


• Attacker wants to infer some information about 


• observes 


• knows algorithm, domain , and potentially more prior information 


• cannot control what attacker knows 

χ

D ∈ χn χ

D Y

D ∈ χn

Y

χ



Differential Privacy
Threat model

• Attacker wants to infer some information about 


• observes , knows algorithm, domain , and prior information.


• can compute likelihood of dataset:

D ∈ χn

Y χ

Pr[D |Y] = Pr[Y |D] ⋅ Pr[D]
Pr[Y]

algorithm prior knowledge



Differential Privacy
Performing membership inference

• Attacker wants to infer presence of 


• observes , knows algorithm, domain , and even 


• can compute likelihood of x in dataset  

x ∈ X?
Y χ D∖x ∈ χn−1

Pr[x′ |Y] = Pr[Y |x′ ] ⋅ Pr[x′ ]
Pr[Y]

algorithm prior knowledge



Differential Privacy
Performing membership inference

• Attacker wants to infer presence of 


• can compute likelihood of x in dataset


• Can even recover  using max-likelihood

x ∈ X?

x

Pr[x′ |Y] = Pr[Y |x′ ] ⋅ Pr[x′ ]
Pr[Y]

algorithm prior knowledge

̂x = arg max
x′ 

Pr[Y |x′ ]Pr[x′ ]



Differential Privacy
Goal

• Attacker wants to infer some information about 


• can compute likelihood of seeing some dataset


• We design a private algorithm by controlling 

D ∈ χn

Pr[Y |D]

algorithm prior knowledge

Pr[D |Y] = Pr[Y |D] ⋅ Pr[D]
Pr[Y]



Differential Privacy
Strict definition

• Perfect relative indistinguishability: For all inputs, the output probability is the 
same.


• The mechanism does not leak any information about D


• However, achieving it is very hard, does not allow any information about D. 

∀D, D′ , y : Pr[Y = y |' = D] = Pr[Y = y |' = D′ ]



Differential Privacy
A better definition

• Some indistinguishability: For all similar inputs, the output probabilities are bounded.


• It means by observing any , adversary is NOT able to distinguish between inputs x 
and x’ beyond a bounded certainty.


• What does similar inputs mean?

• Depends on use case

• location positions that are within some range

• datasets that differ in one individual row

Y

∀y, ∀ similar D, D′ : Pr[Y = y |' = D]
Pr[Y = y |' = D′ ] ≤  constant 



Differential Privacy
Formal definition

-Differential Privacy:ε

An algorithm A satisfies -DP if for any similar 
datasets  and 


ε
D, D′ ∈ χn y ∈ )

Pr[Y = y |D]
Pr[Y = y |D′ ] ≤ exp(ε)

• Recall that  (sensitive data)             algorithm              (answers)


• So we have,   

D Y

Pr[Y |D] = Pr[A(D) = Y]



Differential Privacy
Formal definition

-Differential Privacy:ε

An algorithm A satisfies -DP if for any similar 
datasets  and 


ε
D, D′ ∈ χn y ∈ )

Pr[A(D) = y]
Pr[A(D′ ) = y] ≤ exp(ε)

•  means perfect privacy


•  means not private


ε = 0
ε ≫ 0



Differential Privacy
Source of randomness

• In , over what randomness is the probability defined? 


• The randomness of the algorithm?

• Yes


• Randomness of the data ?

• No. 

• We look at all possible values of  i.e. worst case

Pr[A(D) = y]

D ∈ χn

D, D′ 

∀y, ∀ similar D, D′ : Pr[A(D) = y]
Pr[A(D′ ) = y] ≤ exp(ε)



Differential Privacy
Visual representation
• Consider , and a similar dataset 


• -DP means 

D = ⟨x1, ⋯, xi, ⋯xn⟩ D′ = ⟨x1, ⋯, xi, ⋯xn⟩

ε
Pr[A(D) = y]
Pr[A(D′ ) = y] ≤ exp(ε)



Differential Privacy
Recall Membership Inference

…
Algorithm

Data providers Data users

Algorithm

Data providers

queries

answers

World 1: H0 

with 
xi

…

…

…

• We know everything 
about the algorithm and 
even  


• We observe an output Y


• Need to guess if it came 
from H0 or H1

D∖xi

World 2: H1 

without 
xi



Differential Privacy
Connection to Membership Inference

• We observe Y = 1.


• Can you guess H0 or H1?

Easy to distinguish
Hard to distinguish

H0 H1 H0 H1



Differential Privacy and membership inference
Quantifying connection

Theorem

Suppose A satisfies -DP for datasets  which 
differ by one datapoint. Then, we have


• 


•

ε D, D′ 

Pr[guess H0 |H1] + eεPr[guess H1 |H0] ≥ 1
eεPr[guess H0 |H1] + Pr[guess H1 |H0] ≥ 1

• Type I error  


• Type II error

= Pr[guess H0 |H1]
= Pr[guess H1 |H0]



Differential Privacy and membership inference
Visualizing connection

• 


• gives us blue line with slope 


Pr[guess H0 |H1] + eεPr[guess H1 |H0] ≥ 1

eε

Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Differential Privacy and membership inference
Visualizing connection

• 


• gives the red line with slope 

eεPr[guess H0 |H1] + Pr[guess H1 |H0] ≥ 1

e−ε

Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Differential Privacy and membership inference
Visualizing tradeoff curve of DP

• 


• gives us blue line 


• 


• gives the red line

Pr[guess H0 |H1] + eεPr[guess H1 |H0] ≥ 1

eεPr[guess H0 |H1] + Pr[guess H1 |H0] ≥ 1

Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber

Theoretical lower bound



Algorithms for 
Differential Privacy



Differentially Private Algorithms
Just add Laplace noise

• Suppose A(D) = 0, A(D’) = 1.


• Release 


•

̂y = y + Laplace(0,ε−1)

z ∼ Laplace(μ, b) ⇒ p(z) = 1
2b

e
− |z − μ |

b

∀y, ∀ similar D, D′ : Pr[A(D) = y]
Pr[A(D′ ) = y] ≤ exp(ε)



Differentially Private Algorithms
Just add Laplace noise

• Suppose A(D) = 0, A(D’) = 1. Release 


•  and  


•

̂y = y + Laplace(0,ε−1)
Pr[ ̂y |y = 0] = Laplace(0,ε−1) Pr[ ̂y |y = 1] = Laplace(1,ε−1)
Pr[A(D) = y]
Pr[A(D′ ) = y] = e−ε|y|

e−ε|y−1|
= eε

∀y, ∀ similar D, D′ : Pr[A(D) = y]
Pr[A(D′ ) = y] ≤ exp(ε)



Differentially Private Algorithms
Sensitivity

• I release average income at different zoom levels. Added Lap(0,1).


• Do they all leak same amount of privacy?

https://www.youtube.com/watch?v=GUY5fvyOOfA


Differentially Private Algorithms
Sensitivity and Laplace mechanism

• Definition: Sensitivity of a function  with respect 
to a norm  is


•  

f : (x1, ⋯, xn) ↦ (y1, ⋯, yk)
∥⋅∥

Δf = max
 similar datasets D,D′ 

∥f(D) − f(D′ )∥

Theorem

Suppose  is -sensitive with respect to . Then, 
the following satisfies -DP:


f Δ ∥ ⋅ ∥1
ε

[A(D)]i = [ f(D)]i + Laplace(0,Δε−1)







Differentially Private Algorithms
Sensitivity and Laplace mechanism

• Definition: Sensitivity of a function  with respect 
to a norm  is


• How much noise should we add if we have -sensitivity wrt 


• What about -sensitivity wrt  


• Laplace mechanism is great for functions with small  sensitivity, not so 
much for small  sensitivity

f : (x1, ⋯, xn) ↦ (y1, ⋯, yk)
∥⋅∥

Δ ∥ ⋅ ∥∞

Δ ∥ ⋅ ∥2

ℓ1
ℓ2

Δf = max
 similar datasets D,D′ 

∥f(D) − f(D′ )∥



Differentially Private Algorithms
Gaussian mechanism

• Suppose A(D) = 0, A(D’) = 1.


• Release 


• 


•  and  

̂y = y + Gaussian(0,ε−1)

z ∼ Gaussian(μ, σ2) ⇒ p(z) ∝ 1
σ

e− 1
2 ( z − μ

σ )2

Pr[ ̂y |y = 0] = Gaussian(0,ε−1) Pr[ ̂y |y = 1] = Gaussian(1,ε−1)

•  What happens at the tails?
Pr[A(D) = y]
Pr[A(D′ ) = y] = ?





Differentially Private Algorithms
Visualizing tradeoff curve of DP and Gaussian mechanism

• At the edges, the slope of gaussian 
mechanism is vertical


• Impossible to get DP guarantee for 
any value of 


• Does this mean Gaussian mechanism 
is not private?

ε

Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber

DPGaussian



Differentially Private Algorithms
Approximate DP

• Add flat lines of length  at the edges 
to make some space for Gaussian 
mechanism


• Now chance for Gaussian mechanism 
to show privacy!

δ

Type II error 
we guess member when 

non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber

Approximate -DP(ε, δ)
Vertical line of size δ

Horizontal line of size δ



Differentially Private Algorithms
Aproximate Differential Privacy

• With  probability anything can happen


• Typically  is chosen very small 

δ

δ δ ≤ n−1

-Differential Privacy:(ε, δ)

An algorithm A satisfies -DP if for any similar 
datasets  and 


(ε, δ)
D, D′ ∈ χn y ∈ )

Pr[A(D) = y] ≤ Pr[A(D′ ) = y] ⋅ exp(ε) + δ



Differentially Private Algorithms
Gaussian mechanism

• Suppose A(D) = 0, A(D’) = 1. Release 


• 


•  and  

̂y = y + Gaussian(0,ε−1)

z ∼ Gaussian(μ, σ2) ⇒ p(z) ∝ 1
σ

e− 1
2 ( z − μ

σ )2

Pr[ ̂y |y = 0] = Gaussian(0,ε−1) Pr[ ̂y |y = 1] = Gaussian(1,ε−1)

•  what happens now?
Pr[A(D) = y]
Pr[A(D′ ) = y] = ?



Differentially Private Algorithms
f-DP and Gaussian DP

• All this seems a bit ad-hoc. Is there a 
“canonical” definition of privacy?


• Definition. An algorithm A satisfies f-
DP if the optimal tradeoff curve is 
below the function f. 

• Generalizes all previous notions. What 
f should we pick? Both green and red 
curves satisfy.Type II error 

we guess member when 
non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Differentially Private Algorithms
f-DP and Gaussian DP

• There is a special family of curves: 
Gaussian tradeoff curve


• Definition. An algorithm A satisfies  
-Gaussian Differential Privacy if it is 
harder to distinguish between A(D) vs. 
A(D’) than  

μ

6(0,1) vs. 6(μ,1)
Type II error 

we guess member when 
non-member

Type I error 
we guess non-
m

em
ber when 

m
em

ber



Differentially Private Algorithms
Gaussian mechanism

• Definition: Sensitivity of a function  with respect 
to a norm  is


• What about -sensitivity wrt  


• Gaussian mechanism with GDP is great for  sensitivity!

f : (x1, ⋯, xn) ↦ (y1, ⋯, yk)
∥⋅∥

Δ ∥ ⋅ ∥2

ℓ2

Δf = max
 similar datasets D,D′ 

∥f(D) − f(D′ )∥


