CSCI 699: Privacy Preserving
Machine Learning - Week 3

Algorithms for Differentially Privacy and Machine Learning

Sai Praneeth Karimireddy, Sep 13 2024



Recap

* Differential privacy
Pr|Y=vy|9Y = D] <
Pr]Y=y|9 =D"]

e connection to tradeoff curves of attacker

E

. Vy,V similar D, D" : e

» ;-sensitivity and Laplace mechanism

 (Gaussian Mechanism & Approximate Differential Privacy

 f-DP and Gaussian-DP



Outline for today

How to make ML private?

 Deep dive into approximate DP
 Making mean estimation private

ML training



Approximate
Differential Privacy

PRIVACY

ACCURACY




Approximate Differential Privacy

Original definition

(&, 0)-Differential Privacy:

An algorithm A satisfies (&, 0)-DP if for any
datasets D, D' € y"andy € ¥

PrA(D) = y] < PHA(D") = y] - exp(e) + &



Approximate Differential Privacy

Privacy Loss Variable Reformulation

Lemma 3.17 [Dwork and Roth 2014]
Let us draw a variable t ~ A(D). Then the

Pr[A(D) = t] )

Zpp=1n (Pr[A(D’) — /]

An algorithm A satisfies (&, 0)-DP iff for any similar/neighboring
datasets D, D’ € y" we have

Pr [SZD,D, > 8] <0



Approximate Differential Privacy

Selecting 6: rare terrible events

« A(D) = outputs O with probability 1 — &,
outputs D with prob o

* |s this private?



Approximate Differential Privacy

Selecting 5: name and shame

« D € y" has n data points.
« A(D) foreach x; € D,
e outputs x; with probability o

* |s A private?



Approximate Differentially Private Algorithms

Gaussian mechanism

e Suppose A(D) =0, A(D’) = 1. Release
y=7y+ Gaussian(0,0?)

7 — 2
. Z ~ Gaussian(u, 6°) = p(z) x —e > (555)
o

 What value of o should we pick to satisfy
(e,0)-DP?




Approximate Differentially Private Algorithms

Gaussian mechanism




Approximate Differentially Private Algorithms

Gaussian mechanism

Theorem

Suppose f : y"' — | vis A,-sensitive wrt £,. Then,
the following A satisfies (&, 0)-DP:

« A(D) = fiD) + N (0,p°I)

As\/210g(2/0)

E

. With p =



Approximate Differentially Private Algorithms

Gaussian mechanism




An Aside: beyond global sensitivity

Mean vs median

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries in USD; weighted
by the currencies' respective purchasing power (PPP).
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An Aside: beyond global sensitivity

Mean vs median

» We have dataset D = (x;, ..., Xx,)

 How sensitive is counting (e.g. number of households below the poverty line)?

 How sensitive is the mean (avg household income)?



An Aside: beyond global sensitivity

Mean vs median

» We have dataset D = (x;, ..., Xx,)

* How sensitive Is the ?



Privacy vs.
utility: mean




Binary Mean Estimation

Utility of exact mean

» We have n i.i.d samples (x;, ..., x,) where x; € {0,1}.
1 n
_ Estimate mean as ji = — Z X;. What is the expected error?

n
=1



Binary Mean Estimation

Utility of the private mean

» We have n i.i.d samples (x;, ..., x,) where x; € {0,1}.
1 n
_ Estimate mean as ji = — Z x; + Lap(A/¢g). What is A?
=
1 2
, Net erroris — + :
n  n2e?

e Error with Gaussian mechanism is similar.



Unbounded Mean Estimation

Utility of exact mean

« We have n i.i.d samples (x, ..., x,) with EHxl-H% < o’

1 n
Estimate mean as i = — Z X;. What is the expected error?

n
=1

 What is the sensitivity?



Unbounded Mean Estimation

Bounding sensitivity

« We have n i.i.d samples (x, ..., x,) with EHxl-H% < o’

ot o*

. Letus clip x; with a threshold of 7. The expected erroris < — + —.
T n



Unbounded Mean Estimation

Utility of private mean

« We have n i.i.d samples (x;, ..., X,) with E[xl.z] < o”

R |
. Output i = — ) clip (x,) + Lap(27/ne).

n
=1

Theorem

{1 with T = o\/ ne/2 satisfies e-DP and

has an error
A , o° 4o’
El(fi—p)¥] < —+—
n ne



Unbounded Mean Estimation

Utility of private mean

 We have n i.i.d samples (x;, ..., x,) for x; € 4 with E||xl-H% < 0.
l - ,

. Output — ) clip,(x)) + #(0, p?) for p = 2zlog(2/5)/ne.
iz

e Error?



Unbounded Mean Estimation

Utility of private mean

 We have n i.i.d samples (x;, ..., x,) for x; € 4 \with EHxl-H% < o’
R R )
. Output i = — ) clip,(x)) + H(0,p?) for p = 2zlog(2/5)/ne.
n
i=1

e Error?
Theorem

p# with 7 = O(o\/neld 14y satisfies (&, 8)-DP

and has an error \[
v/ d log(1/5)
E[(f — u)*] < 0( —_—
n Nne



Stochastic Gradient Descent

Optimization for
Machine Learning




Machine Learning

How to train a model?

» We are given i.i.d data: (x;,y;), ..., (x,,V,)-
» We have a parameterized family of predictors f(x;0) : & — ¥.
. Linear models f(x; 0) = 0" x

 Neural Networks f(x; 0) = 6’2T | Relu(é’lT X)



Machine Learning

How to train a model?

» We are given i.i.d data: (x;,y;), ..., (x,,V,)-

» We have a parameterized family of predictors f(x;0) : & — ¥.
. Linear models f(x; 0) = 0" x
 Neural Networks f(x; 0) = 6’2T | Relu(é’lT X)

 We want to find parameters which minimizes test-loss

L(6) = E,, ,[£(f(x; 6), )]



Machine Learning

How to train a model?

» We are given i.i.d data: (x;,y;), ..., (x,,V,)-

» We have a parameterized family of predictors f(x;0) : & — ¥.
. Linear models f(x; 0) = 0" x
 Neural Networks f(x; 0) = 6’2T | Relu(é’lT X)

 We want to find parameters which minimizes test-loss

L(6) = E,, ,[£(f(x; 6), )]

. We instead minimize training loss i(@) = %2?21 1£(f(x;;0),y,)]



Understanding Gradient Descent

e We want to minimize our S
Nnitia

function L(6) . Weight \ /:/ Gradient
e |terative algorithm. Starting /

Incremental

from 0, in step t, Step \ ﬂ
N
/ “

Derivative of Cost

Weight



Understanding Gradient Descent

e \WWe want to minimize our

Initial

function L(6) . Weight \ // Gradient
« lterative algorithm. Starting RS, /
from 0, in step t, Step \ ﬂ
/
/
* we create a local approximation /!
/ /
~ T / inimum Cos
L(Ht + AQ) ™~ L(Ht) + VL(Ht) AH Derivative of Cost ’k‘—(—/M -0t
 Move along “steepest” descent Weight

direction.



Understanding Gradient Descent
Algorithm

Initial

. ! Gradient
Cost Weight ,Il/
» Initialize 0, /

Incremental

e Fort=1, ..., T \/ﬂ
N
s

* et — Ht—l o ytVL(et—l) 5 / e _/Minimum Cost
erivative of Cost

» How to decide y,? A Weight




Understanding Gradient Descent

Analysis

/

5
\ /
\ smooth-bound 7

» 0,=0,_,—7,VLIO,_,)

» How good is our approximation?

L(O, + AO) ~ L(0) + VLO)TAO

. —HAHHZ > (0, + AG) — (L(6)) + VL(B,)TAO) < E\\A@\\z

f-Smoothness



Understanding Gradient Descent

Analysis

/

5
\ /
\ smooth-bound 7

» 0,=0,_,—7,VLIO,_,)

» How good is our approximation?

L(O, + AO) ~ L(0) + VLO)TAO

. —HAHHZ > 1(0,+ AO) — (L(6) + VL(B,)TAO) < E\\A@\\z

pu-Strong convex



Understanding Gradient Descent

Convergence analysis

Theorem

If L is f-smooth and p-strongly convex, gradient
descent with y, = 1/ converges as

[
1) — min L(0) < (1= ) 16, - 0*13
0



Stochastic Gradient Descent

Convergence analysis

» How do we compute VL(6,)?

» We are only given data samples: (x;, y;), ... i.e. we cannot compute

L(6) = E, ,[£(f(x; 6),y)]



Stochastic Gradient Descent

Convergence analysis

» How do we compute VL(6,)?

» We are only given data samples: (x;, y;), ... i.e. we cannot compute

L(6) = E, ,[£(f(x; 6),y)]

» SGD says no problem. Just use sample gradient. Initialize 6

« Sample a data point (x,, y,)

¢+ 0,=0,_1— 1, Vol (f(x;0,_1),y)=0,_, —r,V(0,_))



Understanding Gradient Descent

Convergence analysis
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Understanding Gradient Descent

Convergence analysis

* One final assumption: how bad is this approximation?

, max E||VZ,(0) — VLO)||5 < o°
0

* Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2 statistique optimisation/
grad conv.pdf

Theorem

If L is f-smooth and u-strongly convex, SGD
with step-size y converges as

E|0"— 0|15 < (1 — ywE| 0" = 0™+ v°c°


https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

Optimization for
Deep Learning




Optimization in Deep Learning

Initialization

e |nitialization matters!

* Always start with a pretrained
model if you can.




Optimization in Deep Learning

Momentum

1.0
1 | 0.5
—— | 0.0
/’\ [ -0.5
v — _1.0

B 46 ¢ -4 2 % ° ‘¢ °

Contour Map with GD applied on it. Arrows represent faster fall in error value. Flat surfaces represented by
constant color regions.

Gradient descent slows down a lot when it encounters large flat sections

error



Optimization in Deep Learning

Momentum
4 e
 Add momentum to speed it up . / |
* M, = nm,_4 + ﬂ VL(HZ‘—I) B o ,,f:é,;*;
® thet_l—}/mt -2
-4 E
~4 2 0 2 T
W —

It oscillates in the valley of minima. Take lot U-turns, still converges faster than Vanilla GD.

Physical intuition - biking down a hill is faster than walking down



Optimization in Deep Learning

Nesterov Momentum

 Add momentum to speed it up

ook ahead before jumping - reduces
oscillations

e my=m,_y+pVLO,_ —ym,_,)

¢« 0,=0,_,—ym,

W —

Comparison b/w NAG(blue) v/s Momentum Based Method(Red)



Optimization in Deep Learning

Smoothness
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Figure 4: Smoothness measures w.r.t. y; = x;_1 of deep learning benchmarks using the optimal configurations.
(Top) are the experiments with optimal learning rate scheduler, and (bottom) are the experiments with
constant learning rate. Details of experiment setup can be found in Appendix B!

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”



Optimization in Deep Learning
Adaptivity

* We need to keep changing step size since
smoothness keeps changing all the time

 Make the step-size adaptive -

e v,=v,_, + B (VL@,_)))* - running estimate of
second moment

. 0=0_,—yVLO,_|)/\/v,+ € - normalize the

updates.

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”



Optimization in Deep Learning
AdaGrad

* Progress of AdaGrad in green is much more consistent across steps.

e But it is slower than momentum methods (blue / red)



ptimization in Deep Learning
Adam

 Combine everything - adaptivity + momentum =

e m,=m,_; + pVLO,_;, — ym,_,) - first moment estimate

v,_1 + Po( VL(é’t_l))2 - second moment estimate

0,_—yml/\/v,+ €

Adam: A method for stochastic optimization
DP Kingma, J Ba
arXiv preprint arXiv:1412.6980, 2014 - arxiv.org

.Vt

. 0,

We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic On the convergence of adam and beyond

objective functions, based on adaptive estimates of lower-order moments. The method is SJ Reddi, S Kale, S Kumar - arXiv preprint arXiv:1904.09237, 2019 - arxiv.org

straightforward to implement, is computationally efficient, has little memory requirements, ... the ADAM algorithm given by Kingma & Ba (2015). To resolve this issue, we propose new
is invariant to diagonal rescaling of the gradients, and is well suited for problems that are

I fd N H - od is al f variants of ADAM ... time and space requirements as the original ADAM algorithm. We provide a ...
int t ters. t [ iat - : . . :
‘?‘"9_9 2 em,]S. O,. e an, o ‘plarame .? ,rS il IS - appmpn,? e' or*r?on’ ¢ Save 9YY Cite Cited by 3064 Related articles All 10 versions 9

SHOW MORE v

Y% Save 9YY Cite Cited by 190215 Related articles All 19 versions 99



Optimization in Deep Learning
Adam

 AdamW (a minor variant) is likely the best default optimizer

* |In LLMSs, additionally learning rate warm up is used for 5 epochs.



Understanding Deep Learning

Escaping saddle points

- SGD

- Momentum
-  NAG

- Adagrad
Adadelta
Rmsprop

 Non convexity means there are
a lot of saddle points

o Adaptivity helps 4 1



https://cs231n.github.io/assets/nn3/opt1.gif

Understanding Deep Learning

Escaping saddle points

 Non convexity means there are
a lot of saddle points

* Adaptivity helps

e Momentum also helps

SGU
Momentum
NAG
Adagrad
Adadelta
Rmsprop

rrrrTTr T



https://cs231n.github.io/assets/nn3/opt2.gif

More tips and tricks

 Normalization: Batchnorm, layer
norms etc. Improves
smoothness

» Skips connections improves
smoothness

* \Wider networks improve
smoothness

 Most important: starting from

pertained model &~ convex
landscape




Other tips and tricks

e See https://cs231n.qithub.io/neural-networks-3/

* Check your implementation with backprop and pen and paper
 |nitially turn off all bells - no regularization, augmentation, etc.

* [rain on 1-2 data points and overfit to convergence


https://cs231n.github.io/neural-networks-3/

What about privacy?

Can we make SGD private?

« Sample a data point (x,, y,)

¢« 0,=0,_1— 1, Vol (f(x;0,_1),y) =0,_, —r,V(0,_))



