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CSCI 699: Privacy Preserving 
Machine Learning - Week 3
Algorithms for Differentially Privacy and Machine Learning



Recap

• Differential privacy


• 


• connection to tradeoff curves of attacker


• -sensitivity and Laplace mechanism


• Gaussian Mechanism & Approximate Differential Privacy


• f-DP and Gaussian-DP

∀y, ∀ similar D, D′￼ :
Pr[Y = y |𝒟 = D]
Pr[Y = y |𝒟 = D′￼]

≤ eε

ℓ1



Outline for today
How to make ML private?

• Deep dive into approximate DP


• Making mean estimation private


• ML training



Approximate 
Differential Privacy



Approximate Differential Privacy
Original definition

-Differential Privacy:(ε, δ)

An algorithm A satisfies -DP if for any similar 
datasets  and 


(ε, δ)
D, D′￼ ∈ χn y ∈ 𝒴

Pr[A(D) = y] ≤ Pr[A(D′￼) = y] ⋅ exp(ε) + δ



Approximate Differential Privacy
Privacy Loss Variable Reformulation

Lemma 3.17 [Dwork and Roth 2014]
Let us draw a variable . Then the privacy loss random 
variable


  


An algorithm A satisfies -DP iff for any similar/neighboring 
datasets  we have


t ∼ A(D)

ℒD,D′￼
= ln ( Pr[A(D) = t]

Pr[A(D′￼) = t] )
(ε, δ)

D, D′￼ ∈ χn

Pr [ℒD,D′￼
≥ ε] ≤ δ



Approximate Differential Privacy
Selecting : rare terrible eventsδ

• A(D) = outputs  with probability , 
           outputs  with prob 


• Is this private?

Ø 1 − δ
D δ



Approximate Differential Privacy
Selecting : name and shameδ

•  has n data points.


• A(D) for each ,


• outputs  with probability 


• Is A private?

D ∈ χn

xi ∈ D

xi δ



Approximate Differentially Private Algorithms
Gaussian mechanism

• Suppose A(D) = 0, A(D’) = 1. Release 



• 


• What value of  should we pick to satisfy 
-DP?

̂y = y + Gaussian(0,σ2)

z ∼ Gaussian(μ, σ2) ⇒ p(z) ∝
1
σ

e− 1
2 ( z − μ

σ )2

σ
(ε, δ)



Approximate Differentially Private Algorithms
Gaussian mechanism



Approximate Differentially Private Algorithms
Gaussian mechanism

Theorem

Suppose  is -sensitive wrt . Then, 
the following A satisfies -DP:


• 


• with 

f : χn → ℝd Δ2 ℓ2
(ε, δ)

A(D) = f(D) + 𝒩(0,ρ2I)

ρ =
Δ2 2 log(2/δ)

ε



Approximate Differentially Private Algorithms
Gaussian mechanism



An Aside: beyond global sensitivity
Mean vs median



An Aside: beyond global sensitivity
Mean vs median

• We have dataset 


• How sensitive is counting (e.g. number of households below the poverty line)?


• How sensitive is the mean (avg household income)? 
 
 
 

D = (x1, …, xn)



An Aside: beyond global sensitivity
Mean vs median

• We have dataset 


• How sensitive is the median? 
 
 

D = (x1, …, xn)



Privacy vs. 
utility: mean



Binary Mean Estimation
Utility of exact mean

• We have n i.i.d samples  where .


• Estimate mean as . What is the expected error? 

 
 

(x1, …, xn) xi ∈ {0,1}

̂μ =
1
n

n

∑
i=1

xi



Binary Mean Estimation
Utility of the private mean

• We have n i.i.d samples  where .


• Estimate mean as . What is ? 

• Net error is 


• Error with Gaussian mechanism is similar. 
 
 

(x1, …, xn) xi ∈ {0,1}

̂μ =
1
n

n

∑
i=1

xi + Lap(Δ/ε) Δ

1
n

+
2

n2ε2
.



Unbounded Mean Estimation
Utility of exact mean

• We have n i.i.d samples  with .


• Estimate mean as . What is the expected error?


• What is the sensitivity? 
 
 

(x1, …, xn) E∥xi∥2
2 ≤ σ2

̂μ =
1
n

n

∑
i=1

xi



Unbounded Mean Estimation
Bounding sensitivity

• We have n i.i.d samples  with .


• Let us clip  with a threshold of . The expected error is 

(x1, …, xn) E∥xi∥2
2 ≤ σ2

xi τ ≤
σ4

τ2
+

σ2

n
.



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  with .


• Output .

(x1, …, xn) E[x2
i ] ≤ σ2

̂μ =
1
n

n

∑
i=1

clipτ(xi) + Lap(2τ/nε)

Theorem

 with  satisfies -DP and 
has an error


̂μ τ = σ nε /2 ε

E[( ̂μ − μ)2] ≤
σ2

n
+

4σ2

nε



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  for  with .


• Output  for .


• Error?

(x1, …, xn) xi ∈ ℝd E∥xi∥2
2 ≤ σ2

1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε



Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples  for  with .


• Output  for .


• Error?

(x1, …, xn) xi ∈ ℝd E∥xi∥2
2 ≤ σ2

̂μ =
1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem

 with  satisfies -DP 
and has an error


̂μ τ = O(σ nε /d1/4) (ε, δ)

E[( ̂μ − μ)2] ≤ O ( σ2

n
+

σ2 d log(1/δ)
nε )



Optimization for 
Machine Learning



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 


• We want to find parameters which minimizes test-loss 



•

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)

L(θ) = E(x,y)[ℓ( f(x; θ), y)]



Machine Learning
How to train a model?

• We are given i.i.d data: .


• We have a parameterized family of predictors .


• Linear models 


• Neural Networks 


• We want to find parameters which minimizes test-loss 



• We instead minimize training loss 

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)

L(θ) = E(x,y)[ℓ( f(x; θ), y)]

L̂(θ) = 1
n ∑n

i=1 [ℓ( f(xi; θ), yi)]



Understanding Gradient Descent

• We want to minimize our 
function 


• Iterative algorithm. Starting 
from  in step t,

L(θ)

θt



Understanding Gradient Descent

• We want to minimize our 
function 


• Iterative algorithm. Starting 
from  in step t,


• we create a local approximation 
 




• Move along “steepest” descent 
direction.

L(θ)

θt

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ



Understanding Gradient Descent
Algorithm

• Initialize 


• For t=1, …, T


• 


• How to decide ?

θ0

θt = θt−1 − γt ∇L(θt−1)

γt



Understanding Gradient Descent
Analysis

• 


• How good is our approximation? 
 

 
 

•  

θt = θt−1 − γt ∇L(θt−1)

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ

μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Smoothnessβ



Understanding Gradient Descent
Analysis

• 


• How good is our approximation? 
 

 
 

•  

θt = θt−1 − γt ∇L(θt−1)

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ

μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Strong convexμ



Understanding Gradient Descent
Convergence analysis

Theorem

If L is -smooth and -strongly convex, gradient 
descent with  converges as

β μ
γt = 1/β

L(θt) − min
θ

L(θ) ≤ (1− μ
β )

t
∥θ0 − θ⋆∥2

2



Stochastic Gradient Descent
Convergence analysis

• How do we compute 


• We are only given data samples:  i.e. we cannot compute  

∇L(θt)?

(x1, y1), …
L(θ) = E(x,y)[ℓ( f(x; θ), y)]



Stochastic Gradient Descent
Convergence analysis

• How do we compute 


• We are only given data samples:  i.e. we cannot compute  



• SGD says no problem. Just use sample gradient. Initialize 


• For t=1, …, T


• Sample a data point 


•

∇L(θt)?

(x1, y1), …
L(θ) = E(x,y)[ℓ( f(x; θ), y)]

θ0

(xt, yt)

θt = θt−1 − γt ∇θℓ( f(xt; θt−1), yt) = θt−1 − γt ∇ℓt(θt−1)



Understanding Gradient Descent
Convergence analysis



Understanding Gradient Descent
Convergence analysis

Theorem

If L is -smooth and -strongly convex, SGD 
with step-size  converges as 
 

β μ
γ

E∥θt − θ⋆∥2
2 ≤ (1 − γμ)E∥θt−1 − θ⋆∥2

2 + γ2σ2

• One final assumption: how bad is this approximation?


• 


• Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2_statistique_optimisation/
grad_conv.pdf 

max
θ

E∥∇ℓt(θ) − ∇L(θ)∥2
2 ≤ σ2

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf


Optimization for 
Deep Learning



Optimization in Deep Learning
Initialization

• Initialization matters! 


• Always start with a pretrained 
model if you can.



Optimization in Deep Learning
Momentum

Gradient descent slows down a lot when it encounters large flat sections



Optimization in Deep Learning
Momentum

Physical intuition - biking down a hill is faster than walking down

• Add momentum to speed it up


• 


•

mt = mt−1 + β∇L(θt−1)

θt = θt−1 − γmt



Optimization in Deep Learning
Nesterov Momentum

• Add momentum to speed it up


• Look ahead before jumping - reduces 
oscillations


• 


•

mt = mt−1 + β∇L(θt−1 − γmt−1)

θt = θt−1 − γmt



Optimization in Deep Learning
Smoothness

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”



Optimization in Deep Learning
Adaptivity

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”

• We need to keep changing step size since 
smoothness keeps changing all the time


• Make the step-size adaptive - AdaGrad


•   - running estimate of 
second moment


•  - normalize the 
updates.

vt = vt−1 + β2(∇L(θt−1))2

θt = θt−1 − γ∇L(θt−1)/ vt + ϵ



Optimization in Deep Learning
AdaGrad

• Progress of AdaGrad in green is much more consistent across steps.


• But it is slower than momentum methods (blue / red)



Optimization in Deep Learning
Adam

• Combine everything - adaptivity + momentum  = Adam


•  - first moment estimate


•   - second moment estimate


•

mt = mt−1 + β∇L(θt−1 − γmt−1)

vt = vt−1 + β2(∇L(θt−1))2

θt = θt−1 − γmt / vt + ϵ



Optimization in Deep Learning
Adam

• AdamW (a minor variant) is likely the best default optimizer


• In LLMs, additionally learning rate warm up is used for 5 epochs.



Understanding Deep Learning
Escaping saddle points

• Non convexity means there are 
a lot of saddle points


• Adaptivity helps

https://cs231n.github.io/assets/nn3/opt1.gif


Understanding Deep Learning
Escaping saddle points

• Non convexity means there are 
a lot of saddle points


• Adaptivity helps


• Momentum also helps

https://cs231n.github.io/assets/nn3/opt2.gif


More tips and tricks

• Normalization: Batchnorm, layer 
norms etc. improves 
smoothness


• Skips connections improves 
smoothness


• Wider networks improve 
smoothness


• Most important: starting from 
pertained model  convex 
landscape

≈



Other tips and tricks

• See https://cs231n.github.io/neural-networks-3/


• Check your implementation with backprop and pen and paper


• Initially turn off all bells - no regularization, augmentation, etc.


• Train on 1-2 data points and overfit to convergence

https://cs231n.github.io/neural-networks-3/


What about privacy?
Can we make SGD private?

• For t=1, …, T


• Sample a data point 


•

(xt, yt)

θt = θt−1 − γt ∇θℓ( f(xt; θt−1), yt) = θt−1 − γt ∇ℓt(θt−1)


