
Sai Praneeth Karimireddy, Sep 13 2024

CSCI 699: Privacy Preserving
Machine Learning - Week 3
Algorithms for Differentially Privacy and Machine Learning

Recap

• Differential privacy

•

• connection to tradeoff curves of attacker

• -sensitivity and Laplace mechanism

• Gaussian Mechanism & Approximate Differential Privacy

• f-DP and Gaussian-DP

∀y, ∀ similar D, D′ :
Pr[Y = y |𝒟 = D]
Pr[Y = y |𝒟 = D′]

≤ eε

ℓ1

Outline for today
How to make ML private?

• Deep dive into approximate DP

• Making mean estimation private

• ML training

Approximate
Differential Privacy

Approximate Differential Privacy
Original definition

-Differential Privacy:(ε, δ)

An algorithm A satisfies -DP if for any similar
datasets and

(ε, δ)
D, D′ ∈ χn y ∈ 𝒴

Pr[A(D) = y] ≤ Pr[A(D′) = y] ⋅ exp(ε) + δ

Approximate Differential Privacy
Privacy Loss Variable Reformulation

Lemma 3.17 [Dwork and Roth 2014]
Let us draw a variable . Then the privacy loss random
variable

An algorithm A satisfies -DP iff for any similar/neighboring
datasets we have

t ∼ A(D)

ℒD,D′
= ln (Pr[A(D) = t]

Pr[A(D′) = t])
(ε, δ)

D, D′ ∈ χn

Pr [ℒD,D′
≥ ε] ≤ δ

Approximate Differential Privacy
Selecting : rare terrible eventsδ

• A(D) = outputs with probability , 
 outputs with prob

• Is this private?

Ø 1 − δ
D δ

Approximate Differential Privacy
Selecting : name and shameδ

• has n data points.

• A(D) for each ,

• outputs with probability

• Is A private?

D ∈ χn

xi ∈ D

xi δ

Approximate Differentially Private Algorithms
Gaussian mechanism

• Suppose A(D) = 0, A(D’) = 1. Release

•

• What value of should we pick to satisfy
-DP?

̂y = y + Gaussian(0,σ2)

z ∼ Gaussian(μ, σ2) ⇒ p(z) ∝
1
σ

e− 1
2 (z − μ

σ)2

σ
(ε, δ)

Approximate Differentially Private Algorithms
Gaussian mechanism

Approximate Differentially Private Algorithms
Gaussian mechanism

Theorem

Suppose is -sensitive wrt . Then,
the following A satisfies -DP:

•

• with

f : χn → ℝd Δ2 ℓ2
(ε, δ)

A(D) = f(D) + 𝒩(0,ρ2I)

ρ =
Δ2 2 log(2/δ)

ε

Approximate Differentially Private Algorithms
Gaussian mechanism

An Aside: beyond global sensitivity
Mean vs median

An Aside: beyond global sensitivity
Mean vs median

• We have dataset

• How sensitive is counting (e.g. number of households below the poverty line)?

• How sensitive is the mean (avg household income)? 
 
 
 

D = (x1, …, xn)

An Aside: beyond global sensitivity
Mean vs median

• We have dataset

• How sensitive is the median? 
 
 

D = (x1, …, xn)

Privacy vs.
utility: mean

Binary Mean Estimation
Utility of exact mean

• We have n i.i.d samples where .

• Estimate mean as . What is the expected error? 

 
 

(x1, …, xn) xi ∈ {0,1}

̂μ =
1
n

n

∑
i=1

xi

Binary Mean Estimation
Utility of the private mean

• We have n i.i.d samples where .

• Estimate mean as . What is ? 

• Net error is

• Error with Gaussian mechanism is similar. 
 
 

(x1, …, xn) xi ∈ {0,1}

̂μ =
1
n

n

∑
i=1

xi + Lap(Δ/ε) Δ

1
n

+
2

n2ε2
.

Unbounded Mean Estimation
Utility of exact mean

• We have n i.i.d samples with .

• Estimate mean as . What is the expected error?

• What is the sensitivity? 
 
 

(x1, …, xn) E∥xi∥2
2 ≤ σ2

̂μ =
1
n

n

∑
i=1

xi

Unbounded Mean Estimation
Bounding sensitivity

• We have n i.i.d samples with .

• Let us clip with a threshold of . The expected error is

(x1, …, xn) E∥xi∥2
2 ≤ σ2

xi τ ≤
σ4

τ2
+

σ2

n
.

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples with .

• Output .

(x1, …, xn) E[x2
i] ≤ σ2

̂μ =
1
n

n

∑
i=1

clipτ(xi) + Lap(2τ/nε)

Theorem

 with satisfies -DP and
has an error

̂μ τ = σ nε /2 ε

E[(̂μ − μ)2] ≤
σ2

n
+

4σ2

nε

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples for with .

• Output for .

• Error?

(x1, …, xn) xi ∈ ℝd E∥xi∥2
2 ≤ σ2

1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Unbounded Mean Estimation
Utility of private mean

• We have n i.i.d samples for with .

• Output for .

• Error?

(x1, …, xn) xi ∈ ℝd E∥xi∥2
2 ≤ σ2

̂μ =
1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem

 with satisfies -DP
and has an error

̂μ τ = O(σ nε /d1/4) (ε, δ)

E[(̂μ − μ)2] ≤ O (σ2

n
+

σ2 d log(1/δ)
nε)

Optimization for
Machine Learning

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

• We want to find parameters which minimizes test-loss

•

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)

L(θ) = E(x,y)[ℓ(f(x; θ), y)]

Machine Learning
How to train a model?

• We are given i.i.d data: .

• We have a parameterized family of predictors .

• Linear models

• Neural Networks

• We want to find parameters which minimizes test-loss

• We instead minimize training loss

(x1, y1), …, (xn, yn)

f(x; θ) : 𝒳 → 𝒴

f(x; θ) = θ⊤x

f(x; θ) = θ⊤
2 ⋅ Relu(θ⊤

1 x)

L(θ) = E(x,y)[ℓ(f(x; θ), y)]

L̂(θ) = 1
n ∑n

i=1 [ℓ(f(xi; θ), yi)]

Understanding Gradient Descent

• We want to minimize our
function

• Iterative algorithm. Starting
from in step t,

L(θ)

θt

Understanding Gradient Descent

• We want to minimize our
function

• Iterative algorithm. Starting
from in step t,

• we create a local approximation 
 

• Move along “steepest” descent
direction.

L(θ)

θt

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ

Understanding Gradient Descent
Algorithm

• Initialize

• For t=1, …, T

•

• How to decide ?

θ0

θt = θt−1 − γt ∇L(θt−1)

γt

Understanding Gradient Descent
Analysis

•

• How good is our approximation? 
 

 
 

•  

θt = θt−1 − γt ∇L(θt−1)

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ

μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Smoothnessβ

Understanding Gradient Descent
Analysis

•

• How good is our approximation? 
 

 
 

•  

θt = θt−1 − γt ∇L(θt−1)

L(θt + Δθ) ≈ L(θt) + ∇L(θt)⊤Δθ

μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Strong convexμ

Understanding Gradient Descent
Convergence analysis

Theorem

If L is -smooth and -strongly convex, gradient
descent with converges as

β μ
γt = 1/β

L(θt) − min
θ

L(θ) ≤ (1− μ
β)

t
∥θ0 − θ⋆∥2

2

Stochastic Gradient Descent
Convergence analysis

• How do we compute

• We are only given data samples: i.e. we cannot compute

∇L(θt)?

(x1, y1), …
L(θ) = E(x,y)[ℓ(f(x; θ), y)]

Stochastic Gradient Descent
Convergence analysis

• How do we compute

• We are only given data samples: i.e. we cannot compute

• SGD says no problem. Just use sample gradient. Initialize

• For t=1, …, T

• Sample a data point

•

∇L(θt)?

(x1, y1), …
L(θ) = E(x,y)[ℓ(f(x; θ), y)]

θ0

(xt, yt)

θt = θt−1 − γt ∇θℓ(f(xt; θt−1), yt) = θt−1 − γt ∇ℓt(θt−1)

Understanding Gradient Descent
Convergence analysis

Understanding Gradient Descent
Convergence analysis

Theorem

If L is -smooth and -strongly convex, SGD
with step-size converges as 
 

β μ
γ

E∥θt − θ⋆∥2
2 ≤ (1 − γμ)E∥θt−1 − θ⋆∥2

2 + γ2σ2

• One final assumption: how bad is this approximation?

•

• Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2_statistique_optimisation/
grad_conv.pdf

max
θ

E∥∇ℓt(θ) − ∇L(θ)∥2
2 ≤ σ2

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

Optimization for
Deep Learning

Optimization in Deep Learning
Initialization

• Initialization matters!

• Always start with a pretrained
model if you can.

Optimization in Deep Learning
Momentum

Gradient descent slows down a lot when it encounters large flat sections

Optimization in Deep Learning
Momentum

Physical intuition - biking down a hill is faster than walking down

• Add momentum to speed it up

•

•

mt = mt−1 + β∇L(θt−1)

θt = θt−1 − γmt

Optimization in Deep Learning
Nesterov Momentum

• Add momentum to speed it up

• Look ahead before jumping - reduces
oscillations

•

•

mt = mt−1 + β∇L(θt−1 − γmt−1)

θt = θt−1 − γmt

Optimization in Deep Learning
Smoothness

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”

Optimization in Deep Learning
Adaptivity

Tran et al. 2024 “Empirical Tests of Optimization Assumptions in Deep Learning”

• We need to keep changing step size since
smoothness keeps changing all the time

• Make the step-size adaptive - AdaGrad

• - running estimate of
second moment

• - normalize the
updates.

vt = vt−1 + β2(∇L(θt−1))2

θt = θt−1 − γ∇L(θt−1)/ vt + ϵ

Optimization in Deep Learning
AdaGrad

• Progress of AdaGrad in green is much more consistent across steps.

• But it is slower than momentum methods (blue / red)

Optimization in Deep Learning
Adam

• Combine everything - adaptivity + momentum = Adam

• - first moment estimate

• - second moment estimate

•

mt = mt−1 + β∇L(θt−1 − γmt−1)

vt = vt−1 + β2(∇L(θt−1))2

θt = θt−1 − γmt / vt + ϵ

Optimization in Deep Learning
Adam

• AdamW (a minor variant) is likely the best default optimizer

• In LLMs, additionally learning rate warm up is used for 5 epochs.

Understanding Deep Learning
Escaping saddle points

• Non convexity means there are
a lot of saddle points

• Adaptivity helps

https://cs231n.github.io/assets/nn3/opt1.gif

Understanding Deep Learning
Escaping saddle points

• Non convexity means there are
a lot of saddle points

• Adaptivity helps

• Momentum also helps

https://cs231n.github.io/assets/nn3/opt2.gif

More tips and tricks

• Normalization: Batchnorm, layer
norms etc. improves
smoothness

• Skips connections improves
smoothness

• Wider networks improve
smoothness

• Most important: starting from
pertained model convex
landscape

≈

Other tips and tricks

• See https://cs231n.github.io/neural-networks-3/

• Check your implementation with backprop and pen and paper

• Initially turn off all bells - no regularization, augmentation, etc.

• Train on 1-2 data points and overfit to convergence

https://cs231n.github.io/neural-networks-3/

What about privacy?
Can we make SGD private?

• For t=1, …, T

• Sample a data point

•

(xt, yt)

θt = θt−1 − γt ∇θℓ(f(xt; θt−1), yt) = θt−1 − γt ∇ℓt(θt−1)

