CSCI 699: Privacy Preserving Machine Learning - Week 4 Algorithms for Differentially Privacy and Machine Learning

Sai Praneeth Karimireddy, Sep 20 2024

Recap

Approximate differential privacy

Lemma 3.17 [Dwork and Roth 2014]

Let us draw a variable $t \sim A$

 $\mathscr{L}_{D.D'} = \ln$ variable.

 $D, D' \in \chi^n$ we have $Pr\left[\mathscr{L}_{D,D'} \geq \varepsilon\right] \leq \delta$

$$(D)$$
. Then the privacy loss random
 $\left(\frac{Pr[A(D) = t]}{Pr[A(D') = t]}\right)$

A satisfies (ε , δ)-DP iff for any similar/neighboring datasets

Recap **Private mean estimation**

• Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0,$$

Theorem

and has an error

ρ^{2} , ρ^{2}) for $\rho = 2\tau \log(2/\delta)/n\varepsilon$.

Recap **Gradient descent**

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla L(\theta_{t-1})$$

• $\frac{\mu}{2} \|\Delta\theta\|_2^2 \ge L(\theta_t + \Delta\theta) - (L(\theta_t) + \nabla L(\theta_t)^\top \Delta\theta) \le \frac{\beta}{2} \|\Delta\theta\|_2^2$

 μ -strongly-convex

Theorem

descent with $\gamma_t = 1/\beta$ converges as $L(\theta_t) - \min_{\theta} L(\theta) \le \left(1 - \frac{\mu}{\beta}\right)^t \|\theta_0 - \theta^\star\|_2^2$

$$\beta$$
-Smoothness

If L is β -smooth and μ -strongly convex, gradient

Recap **Stochastic gradient descent**

- We are do not know $L(\theta) = E_{(x,y)}[t]$ samples.
- For t = 1,..., n
 - Sample a data point (x_t, y_t)

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla_{\theta} \ell(f(x_t; \theta_{t-1})), t)$$

Question: how do we make this private?

$$\mathcal{P}(f(x;\theta),y)], \text{ only}$$

$y_t = \theta_{t-1} - \gamma_t \nabla \ell_t(\theta_{t-1})$

Agenda for today Analyzing privacy of ML training

- Analysis of private GD: Composition
- Analysis of private SGD: Subsampling amplification
- Privacy-utility tradeoff for mean
- DP-deep learning with Opacus

Making Gradient Descent Private: Composition

Gradient Descent Variants

- we are given *n* samples $(x_1, y_1), \ldots,$
- We have a few options:
 - Exact gradient: $\nabla_{\theta} E_{x,y}[\ell(f(x;\theta),y)]$

 - Full-batch gradient: $\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell(f(x_i; \theta), y_i)$
 - Mini-batch gradient: for a samp

$$(x_n, y_n)$$

• Stochastic gradient: for a random sample (x_i, y_i) , $\nabla_{\theta} \ell(f(x_i; \theta), y_i)$

$$\mathcal{J}(f(x_i; \theta), y_i)$$
ble $\mathcal{B}, \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla_{\theta} \mathcal{L}(f(x_i; \theta), y_i)$

Private full-batch gradient descent Algorithm

• Starting from θ_0 , at each time step we update

•
$$\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \mathcal{E}(f(x_i))$$

• To make it private

•
$$\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{C}(f(x_i; \theta), y_i) \right) + \operatorname{noise}$$

• Assume scalar for now. So noise = Lap(??)

 $(i; \theta), y_i)$

Private full-batch gradient descent **One-step privacy**

- Suppose we just run step of $\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{C}(f(x_i; \theta), y_i) \right) + Lap(??)$
- Sensitivity? How much noise?

How to reason about what happens across time steps?

Post-processing and composition Post-processing

• You can never undo the output of a DP-algorithm

Theorem

 $A: \mathcal{X}^n \to \mathbb{R}^d$ is a (ε, δ) -DP algorithm and f is a mapping independent of \mathscr{X} , then $f \circ A$ is (ε, δ) -DP

• Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).

• What if the new function also depends on our data?

Theorem

 $A: \mathscr{X}^n \to \mathbb{R}^d$ is a $(\varepsilon_1, 0)$ -DP algorithm and $B: \mathscr{X}^n \to \mathbb{R}^d$ is a $(\varepsilon_2, 0)$ -DP algorithm, then $(A, B): \mathscr{X}^n \to \mathbb{R}^d \times \mathbb{R}^d$ is $(\varepsilon_1 + \varepsilon_2, 0)$ -DP

Private full-batch gradient descent **Multi-step privacy**

- One step is $(\varepsilon, 0)$ -DP $\theta_t = \theta_{t-1} \gamma \frac{1}{n} \sum_{i=1}^n \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{E}(f(x_i; \theta), y_i) \right) + Lap(2\tau/n\varepsilon)$
- k-steps of full-batch gradient descent is $(k\varepsilon, 0)$ -DP.

• We can do better!

Private full-batch gradient descent **Advanced composition**

- Let us compute the privacy random variable:
- $R \in [-\varepsilon, \varepsilon]$ and has mean 0.

Private full-batch gradient descent **Advanced composition**

• Privacy random variable of composition: $R = \sum_{i=1}^{k} \log\left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]}\right) = \sum_{i=1}^{k} R_i$

• $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent.

Private full-batch gradient descent **Aside: Azuma's inequality**

Azuma's inequality

Given X_1, \ldots, X_n where $E[X_i | \text{past}] = 0$, $|X_i| \le \varepsilon_i$. Then, $Pr[\sum_{i=1}^{k} X_i \ge \Delta] \le \exp(-\Delta^2/2\sum_{i=1}^{k} \varepsilon_i^2)$

- $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent.
- $Pr[\sum_{i=1}^{k} R_i \ge \varepsilon \sqrt{2k \log(1/\delta)}] \le \delta$ i.e. we have $(\varepsilon \sqrt{2k \ln(1/\delta)}, \delta)$ -DP!

Private full-batch gradient descent **Advanced composition**

Theorem. Advanced Composition

A combination of $A_1 \circ A_2 \circ A_k$, each of which is (ε, δ) -DP is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP where

 $\tilde{\varepsilon} = \varepsilon \sqrt{2k \ln(1/\delta')} + k \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$ and

For any choice of δ' .

$$\tilde{\delta} = k\delta + \delta'$$

Private full-batch gradient descent Multi-step privacy

- One step is $(\varepsilon, 0)$ -DP $\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \ell(f(\cdot)) \right)$
- k-steps of full-batch gradient descent is $(\epsilon \sqrt{2k \ln(1/\delta)}, \delta)$ -DP.
- How about with Gaussian-noise and vectors?

$$(x_i; \theta), y_i) + Lap(2\tau/n\varepsilon)$$

Making SGD Private: Subsampling

Private stochastic gradient descent Algorithm

- Starting from θ_0 , at each time step
 - sample (x_i, y_i) randomly from $(x_1, y_1), \ldots, (x_n, y_n)$

•
$$\theta_t = \theta_{t-1} - \gamma \nabla_{\theta} \ell(f(x_i; \theta), y_i)$$

• To make it private

•
$$\theta_t = \theta_{t-1} - \gamma \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{E}(f(x_i;$$

• Assume scalar for now. So noise = Lap(??)

 $(\theta), y_i)$ + noise

Private stochastic gradient descent **One-step privacy**

• Suppose we just run step:

•
$$\theta_t = \theta_{t-1} - \gamma \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{C}(f(x_t; t)) \right)$$

- No improvement due to *n*
- Important note: use poisson sampling! Not uniform.
- This makes analyzing what happens to each data-point independent.

 $(\theta), y_t) + Lap(2\tau/\varepsilon)$

Privacy amplification via subsampling

- Given a dataset $D \in \mathcal{X}^n$, and $m \in [n]$
- We define S to be a random m-subsample of D
- Is releasing S private?
- Now suppose A is ε -DP on D. What is the privacy of A composed with subsampling?

Privacy amplification via subsampling

Theorem. Subsampling Amplification

results in an $(\tilde{\varepsilon}, \tilde{\delta})$ -DP algorithm where

- Composing an (ε, δ) -DP A with a sampling rate of q
- $\tilde{\varepsilon} = \log(1 q + qe^{\varepsilon}) = O(q\varepsilon)$ and $\tilde{\delta} = q\delta$

Recall **Membership Inference definition of privacy**

- Claim: $\beta + (1 q + qe^{\varepsilon})\alpha \ge 1 \delta$
- and, $(1 q + qe^{\varepsilon})\beta + \alpha \ge 1 \delta$, where $\alpha = \text{type I error}, \beta = \text{type II error}$

Private stochastic gradient descent One-step privacy

• Suppose we just run step:

•
$$\theta_t = \theta_{t-1} - \gamma \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \mathscr{C}(f(x_t; \theta), y_t) \right) + Lap(2\tau/\varepsilon)$$

- We have q = 1/n. So, we have $\tilde{\varepsilon} = \log(1 1/n + e^{\varepsilon}/n) = O(\varepsilon/n)$
- Adding in advanced composition, k rounds of SGD satisfies $(O(\epsilon/n\sqrt{k\ln(1/\delta)}), \delta)$ -DP
- Compare n steps of SGD with 1 ste utility.

Compare n steps of SGD with 1 step of full-batch. In practice, much better

Analyzing Private learning

Private learning analysis **Private mean estimation**

Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0, t)$$

Theorem

and has an error

ρ^{2} , ρ^{2}) for $\rho = 2\tau \log(2/\delta)/n\varepsilon$.

Private learning analysis **Private mean estimation**

• Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0,$$

•
$$\hat{\mu}_t = \hat{\mu}_{t-1} - \gamma \left(\operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0, \rho^2) \right)$$

- Privacy analysis?
- Error analysis?

• What if we think of this as an iterative algorithm of *n* steps with $\gamma = \frac{1}{n}$:

Convergence analysi Gradient descent

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla L(\theta_{t-1})$$

$$\frac{\mu}{2} \| \Delta \theta \|_2^2 > L(\theta + \Delta \theta) - (L(\theta + \Delta \theta))$$

$$\cdot \frac{\tau}{2} \|\Delta\theta\|_2^2 \ge L(\theta_t + \Delta\theta) - (L(\theta_t) + \Delta\theta)$$

 μ -strongly-convex

Theorem

If L is β -smooth and μ -s descent with $\gamma_t = 1/\beta$ c $L(\theta_t) - \min_{\theta} L(\theta) \le \left(1 + \frac{1}{\theta}\right)$

$$\nabla L(\theta_t)^{\mathsf{T}} \Delta \theta \le \frac{\beta}{2} \|\Delta \theta\|_2^2$$

 β -Smoothness

strongly convex, gradient converges as
$$\left\| -\frac{\mu}{\beta} \right\| \| \theta_0 - \theta^* \|_2^2$$

Understanding Gradient Descent Convergence analysis

One final assumption: how bad is this approximation?

 Proofs cheat sheet: <u>https://gowerrobert.github.io/pdf/M2_statistique_optimisation/</u> grad_conv.pdf

Theorem

with step-size γ converges as

 $\max_{o} E \|\nabla \ell_t(\theta) - \nabla L(\theta)\|_2^2 \le \sigma^2$

- If L is β -smooth and μ -strongly convex, SGD
- $E\|\theta^{t} \theta^{\star}\|_{2}^{2} \le (1 \gamma\mu)E\|\theta^{t-1} \theta^{\star}\|_{2}^{2} + \gamma^{2}\sigma^{2}$

