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CSCI 699: Privacy Preserving 
Machine Learning - Week 4
Algorithms for Differentially Privacy and Machine Learning



Recap

• Approximate differential privacy
Lemma 3.17 [Dwork and Roth 2014]

Let us draw a variable . Then the privacy loss random 

variable.               


A satisfies -DP iff for any similar/neighboring datasets 
 we have  

t ∼ A(D)
ℒD,D′ 

= ln ( Pr[A(D) = t]
Pr[A(D′ ) = t] )

(ε, δ)
D, D′ ∈ χn Pr [ℒD,D′ 

≥ ε] ≤ δ



Recap
Private mean estimation

• Output  for .̂μ =
1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem

 with  satisfies -DP 
and has an error


̂μ τ = O(σ nε /d1/4) (ε, δ)

E[( ̂μ − μ)2] ≤ O ( σ2

n
+

σ2 d log(1/δ)
nε )



Recap
Gradient descent

• 


•  

θt = θt−1 − γt ∇L(θt−1)
μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Smoothnessβ-strongly-convexμ

Theorem

If L is -smooth and -strongly convex, gradient 
descent with  converges as

β μ
γt = 1/β

L(θt) − min
θ

L(θ) ≤ (1− μ
β )

t
∥θ0 − θ⋆∥2

2



Recap
Stochastic gradient descent

• We are do not know , only 
samples. 


• For t = 1,…, n


• Sample a data point 


• 


• Question: how do we make this private?

L(θ) = E(x,y)[ℓ( f(x; θ), y)]

(xt, yt)

θt = θt−1 − γt ∇θℓ( f(xt; θt−1), yt) = θt−1 − γt ∇ℓt(θt−1)



Agenda for today
Analyzing privacy of ML training

• Analysis of private GD: Composition


• Analysis of private SGD: Subsampling amplification


• Privacy-utility tradeoff for mean


• DP-deep learning with Opacus



Making Gradient 
Descent Private: 
Composition



Gradient Descent Variants

• we are given  samples 


• We have a few options:


• Exact gradient: 


• Stochastic gradient: for a random sample , 


• Full-batch gradient: 


• Mini-batch gradient: for a sample , 

n (x1, y1), …, (xn, yn)

∇θEx,y[ℓ( f(x; θ), y)]

(xi, yi) ∇θℓ( f(xi; θ), yi)
1
n ∑n

i=1 ∇θℓ( f(xi; θ), yi)

ℬ 1
|ℬ |

∑i∈ℬ ∇θℓ( f(xi; θ), yi)



Private full-batch gradient descent
Algorithm

• Starting from , at each time step we update


• 


• To make it private


• 


• Assume scalar for now. So noise = 

θ0

θt = θt−1 − γ 1
n ∑n

i=1 ∇θℓ( f(xi; θ), yi)

θt = θt−1 − γ 1
n ∑n

i=1 Clipτ (∇θℓ( f(xi; θ), yi)) + noise

Lap(??)



Private full-batch gradient descent
One-step privacy

• Suppose we just run step of



• Sensitivity? How much noise?


• How to reason about what happens across time steps?

θt = θt−1 − γ 1
n ∑n

i=1 Clipτ (∇θℓ( f(xi; θ), yi)) + Lap(??)



Post-processing and composition
Post-processing

• You can never undo the output of a DP-algorithm

Theorem

 is a -DP 
algorithm and  is a mapping 
independent of , then  
is -DP

A : 𝒳n → ℝd (ε, δ)
f
𝒳 f ∘ A

(ε, δ)

• Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).



Post-processing and composition
Composition

• What if the new function also depends on our data?

Theorem

 is a -DP algorithm and 
 is a -DP algorithm, then

 is -DP

A : 𝒳n → ℝd (ε1,0)
B : 𝒳n → ℝd (ε2,0)
(A, B) : 𝒳n → ℝd × ℝd (ε1 + ε2,0)



Private full-batch gradient descent
Multi-step privacy

• One step is -DP 



• -steps of full-batch gradient descent is -DP.


• We can do better!

(ε,0)
θt = θt−1 − γ 1

n ∑n
i=1 Clipτ (∇θℓ( f(xi; θ), yi)) + Lap(2τ/nε)

k (kε,0)



Private full-batch gradient descent
Advanced composition

• Let us compute the privacy random variable: 




•  and has mean 0.

R = log ( Pr[A(D) = t]
Pr[A(D′ ) = t] )  for t ∼ A(D)

R ∈ [−ε, ε]



Private full-batch gradient descent
Advanced composition

• Privacy random variable of composition:




• , 0-mean, conditionally independent.

R =
k

∑
i=1

log ( Pr[Ai(D) = ti]
Pr[Ai(D′ ) = ti] ) =

k

∑
i=1

Ri

Ri ∈ [−ε, ε]



Private full-batch gradient descent
Aside: Azuma’s inequality

Azuma’s inequality

Given  where , . 
Then,

X1, …, Xn E[Xi |past] = 0 |Xi | ≤ εi

• , 0-mean, conditionally independent.


•  i.e. we have -DP!

Ri ∈ [−ε, ε]

Pr[∑k
i=1 Ri ≥ ε 2k log(1/δ)] ≤ δ (ε 2k ln(1/δ), δ)

Pr[∑k
i=1 Xi ≥ Δ] ≤ exp(−Δ2/2∑k

i=1 ε2
i )



Private full-batch gradient descent
Advanced composition

Theorem. Advanced Composition
A combination of , each of which is 

-DP is -DP where


For any choice of .

A1 ∘ A2 ∘ Ak
(ε, δ) (ε̃, δ̃)

δ′ 

ε̃ = ε 2k ln(1/δ′ ) + k eε − 1
eε + 1 and δ̃ = kδ + δ′ 



Private full-batch gradient descent
Multi-step privacy

• One step is -DP 



• -steps of full-batch gradient descent is -DP.


• How about with Gaussian-noise and vectors?

(ε,0)
θt = θt−1 − γ 1

n ∑n
i=1 Clipτ (∇θℓ( f(xi; θ), yi)) + Lap(2τ/nε)

k (ε 2k ln(1/δ), δ)



Making SGD 
Private: 
Subsampling



Private stochastic gradient descent
Algorithm

• Starting from , at each time step


• sample  randomly from 


• 


• To make it private


• 


• Assume scalar for now. So noise = 

θ0

(xi, yi) (x1, y1), …, (xn, yn)

θt = θt−1 − γ∇θℓ( f(xi; θ), yi)

θt = θt−1 − γClipτ (∇θℓ( f(xi; θ), yi)) + noise

Lap(??)



Private stochastic gradient descent
One-step privacy

• Suppose we just run step:


• 


• No improvement due to 


• Important note: use poisson sampling! Not uniform. 


• This makes analyzing what happens to each data-point independent.

θt = θt−1 − γClipτ (∇θℓ( f(xt; θ), yt)) + Lap(2τ/ε)

n



• Given a dataset , and 


• We define S to be a random m-subsample of D


• Is releasing S private?


• Now suppose  is -DP on D. What is the privacy of A composed with 
subsampling?

D ∈ 𝒳n m ∈ [n]

A ε

Privacy amplification via subsampling



Privacy amplification via subsampling

Theorem. Subsampling Amplification
Composing an -DP A with a sampling rate of  
results in an -DP algorithm where


(ε, δ) q
(ε̃, δ̃)

ε̃ = log(1 − q + qeε) = O(qε) and δ̃ = qδ



Recall
Membership Inference definition of privacy

…
Algorithm

Data providers Data users

Algorithm

Data providers

querie

answer

World 1: 

World 2: 
…

…

…

• Claim: 


• and, , where 

β + (1 − q + qeε)α ≥ 1 − δ

(1 − q + qeε)β + α ≥ 1 − δ α = type I error, β = type II error



Private stochastic gradient descent
One-step privacy

• Suppose we just run step:


• 


• We have . So, we have 


• Adding in advanced composition, k rounds of SGD satisfies 
-DP


• Compare n steps of SGD with 1 step of full-batch. In practice, much better 
utility.

θt = θt−1 − γClipτ (∇θℓ( f(xt; θ), yt)) + Lap(2τ/ε)

q = 1/n ε̃ = log(1 − 1/n + eε/n) = O(ε/n)

(O(ε/n k ln(1/δ)), δ)



Analyzing Private 
learning



Private learning analysis
Private mean estimation

• Output  for .̂μ =
1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2) ρ = 2τ log(2/δ)/nε

Theorem

 with  satisfies -DP 
and has an error


̂μ τ = O(σ nε /d1/4) (ε, δ)

E[( ̂μ − μ)2] ≤ O ( σ2

n
+

σ2 d log(1/δ)
nε )



Private learning analysis
Private mean estimation

• Output  .


• What if we think of this as an iterative algorithm of  steps with :


• 


• Privacy analysis?


• Error analysis?

̂μ =
1
n

n

∑
i=1

clipτ(xi) + 𝒩(0, ρ2)

n γ = 1
n

̂μt = ̂μt−1 − γ (clipτ(xi) + 𝒩(0, ρ2))



Bonus



Convergence analysis
Gradient descent

• 


•  

θt = θt−1 − γt ∇L(θt−1)
μ
2

∥Δθ∥2
2 ≥ L(θt + Δθ) − (L(θt) + ∇L(θt)⊤Δθ) ≤

β
2

∥Δθ∥2
2

-Smoothnessβ-strongly-convexμ

Theorem

If L is -smooth and -strongly convex, gradient 
descent with  converges as

β μ
γt = 1/β

L(θt) − min
θ

L(θ) ≤ (1− μ
β )

t
∥θ0 − θ⋆∥2

2



Understanding Gradient Descent
Convergence analysis

Theorem

If L is -smooth and -strongly convex, SGD 
with step-size  converges as 
 

β μ
γ

E∥θt − θ⋆∥2
2 ≤ (1 − γμ)E∥θt−1 − θ⋆∥2

2 + γ2σ2

• One final assumption: how bad is this approximation?


• 


• Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2_statistique_optimisation/
grad_conv.pdf 

max
θ

E∥∇ℓt(θ) − ∇L(θ)∥2
2 ≤ σ2

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

