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Recap

* Approximate differential privacy
Lemma 3.17 [Dwork and Roth 2014]

Let us draw a variable t ~ A(D). Then the

o ( Pr[A(D) = 1] )
b0 = T\ prAD) = 1]

A satisfies (&, 0)-DP iff for any similar/neighboring datasets
D,D’" € y" we have Pr [SZD,D, > g] <o



Recap

Private mean estimation

1 n
. Output i = — ) clip,(x)) + H(0,p?) for p = 2zlog(2/5)/ne.

n
=1

Theorem

f with 7 = O(o\/neld 14y satisfies (&, §)-DP

and has an error \[
’v/d log(1/6)
E[(fi — u)*] < 0( ———
n Nne
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Recap

Gradient descent

» 0,=0,_,—7,VLIO,_,)

‘%

—HAH”Z > L(6,+ AO) — (L(6) + VL(O)'A0) < =||A]|3

2

#-strongly-convex f-Smoothness

Theorem

If L is f-smooth and p-strongly convex, gradient
descent with y, = 1/ converges as

L(6) ~ min L(6) < (1-2) 1oy~ 0*13



| Haad

Recap

20
|
\\

10

Stochastic gradient descent

» We are do not know L(0) = E, ) [£(f(x;0),y)], only
samples.
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e Fort=1,..., n

» Sample a data point (x,, y,)
c 0,=0_1 -y, Vol (f(x0,_1),y) =0,_, — 7,V 0,_))

e Question: how do we make this private?



Agenda for today

Analyzing privacy of ML training

* Analysis of private GD: Composition
* Analysis of private SGD: Subsampling amplification
* Privacy-utility tradeoff for mean

 DP-deep learning with Opacus



Making Gradient
Descent Private:
Composition

PRIVACY

ACCURACY




Gradient Descent Variants

» we are given n samples (x;, ), ..., (X, y,)

 We have a few options:

» Exact gradient: VyE  [£(f(x;0),y)]

» Stochastic gradient: for a random sample (x;, y,), V2 (f(x;;0),y.)
. Full-batch gradient: 1 Z?_l Vol (f(x;;0),y.)

. Mini-batch gradient: for a sample &%, @ o V0 (f(x;;0),y,)



Private full-batch gradient descent
Algorithm

» Starting from @, at each time step we update

« 0,=0,_, - 7’% ZL Vol (J(x;;0), )

 [o make it private
. 0,=0_, — y% 2?21 Clip_ ( V0 (f(x; 6’),yl-)) + noise

» Assume scalar for now. So noise = Lap(??)



Private full-batch gradient descent

One-step privacy

e Suppose we just run step of

0,=0,_, —y— . Clip, (Vo (fix;0).y)) + Lap(??)

o Sensitivity? How much noise?

« How to reason about what happens across time steps?



Post-processing and composition

Post-processing

e You can never undo the output of a DP-algorithm

Theorem

A: 2" > R%sa(e,5)-DP
algorithm and f is a mapping
independent of 2, then fo A
is (¢,0)-DP

* Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).



Post-processing and composition

Composition  -f---oooooeee e :

 What if the new function also depends on our data”?

Theorem

A" - Risa (&,,0)-DP algorithm and
B: 2" - R%sa (&,,0)-DP algorithm, then
(A,B): " - R¥x R%is (g; + &,,0)-DP




Private full-batch gradient descent
Multi-step privacy

e One step is (eiO)—DP
0,=0,_, -y Clio, (Vy/(f(x30).y)) + Lap(2t/ne)

» k-steps of full-batch gradient descent is (k&,0)-DP.

e We can do better!



Private full-batch gradient descent

Advanced composition

A} ““““““ e e I
Aq A, —1 Aj — 00 e — Ay
* | et us compute the privacy random variable: ;
Pr[A(D) = t] : °
R=log| ————— fort ~ A(D) ° -
Pr[A(D") = t] ]
* R € [—¢, €] and has mean 0. e




Private full-batch gradient descent

Advanced composition

X
____| ___________________________________________________
a 1
A]_ Az e A3 — @0 0 0 " Ak
e e D DD
y y y y

. Prlvacy random variable of composition:
PrlA(D) =t s

R = Zlog PriAD =4 ) _ Y R,
Pr[A(D)—t] —

» R € [—¢, €], 0-mean, conditionally independent.



Private full-batch gradient descent

Aside: Azuma’s inequality

Azuma’s inequality Graph for 0.1x, 0.14/2x In(1000)

Given X, ..., X where E[X.|past] =0, | X.| < €.
Then,

Pr[zl X; > A] < exp(— Az/ZZl €7

» R, € [—¢, €], 0-mean, conditionally independent.

. Pr Y, R;> e/2klog(178)] < &i.e. we have (ey/2k In(1/5), §)-DP!



Private full-batch gradient descent

Adva nced com pOSiti on Graph for 0.1x, 0.14/2x In(1000) + x(e®! — 1)/(e%! + 1)

Theorem. Advanced Composition

A combination of A o A, o A;, each of which is
(e,0)-DP is (€, 0)-DP where

g =e/2kIn(1/5) + k<= and 5=k5+ 6

For any choice of 0.




Private full-batch gradient descent
Multi-step privacy

e One step is (eiO)—DP
0,=0,_, -y Clio, (Vy/(f(x30).y)) + Lap(2t/ne)

o k-steps of full-batch gradient descent is (ey/2k In(1/6), 6)-DP.

e How about with Gaussian-noise and vectors?



Making SGD
Private:
Subsampling

PRIVACY

ACCURACY




Private stochastic gradient descent
Algorithm

» Starting from @, at each time step

 sample (x;, y;) randomly from (x{, y), ..., (x,, V)

e 0,=0,_, —yVol(f(x;0),y,)

 [o make it private
. 0,=0,_, — yClip_( Vo2 (f(x;; 0),y,)) + noise

» Assume scalar for now. So noise = Lap(??)



Private stochastic gradient descent

One-step privacy

e Suppose we just run step:
. 0,=0,_, — yClip_( Vo2 (f(x;; 0),y,)) + Lap(21/¢)

« No improvement due to n
* |mportant note: use Not uniform.

* This makes analyzing what happens to each data-point independent.



Privacy amplification via subsampling

« GivenadatasetD € X", and m € [n]
 We define S to be a random m-subsample of D

* |s releasing S private?

« Now suppose A is e-DP on D. What is the privacy of A composed with
subsampling?



Privacy amplification via subsampling

Theorem. Subsampling Amplification

Composing an (&, 0)-DP A with a sampling rate of g
results in an (&, 0)-DP algorithm where

& =log(l — g+ qge) =0(qge) and 6 =qgd



Recall

Membership Inference definition of privacy

type II error

0.2 -

0.0 I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

+ Claim: S+ (1 —q+gea>1-35

e and, (1 —g+qge®)p+a>1— 0, where a = type | error, [/ = type Il error

- - TTY ______



Private stochastic gradient descent

One-step privacy

e Suppose we just run step:
. 0,=0,_, — yClip_( Vo2 (f(x;; 0),y,)) + Lap(21/¢)

» We have g = 1/n. So, we have € = log(1 — 1/n + e“/n) = O(e/n)

* Adding in advanced composition, k rounds of SGD satisfies
(O(e/m/k1n(1/5)), 5)-DP

« Compare n steps of SGD with 1 step of full-batch. In practice, much better
utility.



Analyzing Private
learning

PRIVACY

ACCURACY




Private learning analysis

Private mean estimation

1 n
. Output i = — ) clip,(x)) + H(0,p?) for p = 2zlog(2/5)/ne.

n
=1

Theorem

f with t = O(o\/neld 14y satisfies (&, §)-DP

and has an error \[
’v/d log(1/6)
E[(fi — u)*] < 0( ————
n Nne



Private learning analysis

Private mean estimation

1 n
, Output fi = — Z clip, (x;) + (0, p?) .
=1

« What if we think of this as an iterative algorithm of n steps with y = %:

o fi, = fi_y — v (clip(x) + A0, p?))
* Privacy analysis?

* Error analysis?



PRIVACY

ACCURACY
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Convergence analysis

Gradient descent

» 0,=0,_,—7,VLIO,_,)

—HAHHZ > L0, + AO) — (L(0) + VL(0)TAf) < éHA&’Hz

#-strongly-convex f-Smoothness

Theorem

If L is f-smooth and p-strongly convex, gradient
descent with y, = 1/ converges as

L(6) ~ min L(6) < (1-2) 1oy~ 0*13



Understanding Gradient Descent

Convergence analysis

* One final assumption: how bad is this approximation?

, max E||VZ,(0) — VLO)||5 < o°
0

* Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2 statistique optimisation/
grad conv.pdf

Theorem

If L is f-smooth and u-strongly convex, SGD
with step-size y converges as

E|0"— 0|15 < (1 — ywE| 0" = 0™+ v°c°


https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

