CSCI 699: Privacy Preserving Machine Learning - Week 4

Algorithms for Differentially Privacy and Machine Learning

Approximate differential privacy

Lemma 3.17 [Dwork and Roth 2014]

Let us draw a variable $t \sim A(D)$. Then the privacy loss random

variable.
$$\mathscr{L}_{D,D'} = \ln \left(\frac{Pr[A(D) = t]}{Pr[A(D') = t]} \right)$$

A satisfies (ε, δ) -DP iff for any similar/neighboring datasets $D, D' \in \chi^n$ we have $\Pr\left[\mathscr{L}_{D, D'} \geq \varepsilon\right] \leq \delta$

Private mean estimation

• Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \text{clip}_{\tau}(x_i) + \mathcal{N}(0, \rho^2)$$
 for $\rho = 2\tau \log(2/\delta)/n\varepsilon$.

Theorem

$$\hat{\mu}$$
 with $\tau = O(\sigma \sqrt{n\varepsilon}/d^{1/4})$ satisfies (ε, δ) -DP and has an error

$$E[(\hat{\mu} - \mu)^2] \le O\left(\frac{\sigma^2}{n} + \frac{\sigma^2 \sqrt{d} \log(1/\delta)}{n\varepsilon}\right)$$

Gradient descent

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla L(\theta_{t-1})$$

$$\frac{\mu}{2} \|\Delta\theta\|_2^2 \ge L(\theta_t + \Delta\theta) - \left(L(\theta_t) + \nabla L(\theta_t)^\top \Delta\theta\right) \le \frac{\beta}{2} \|\Delta\theta\|_2^2$$

 μ -strongly-convex

eta-Smoothness

Theorem

If L is β -smooth and μ -strongly convex, gradient descent with $\gamma_t = 1/\beta$ converges as

$$L(\theta_t) - \min_{\theta} L(\theta) \le \left(1 - \frac{\mu}{\beta}\right)^t \|\theta_0 - \theta^*\|_2^2$$

Stochastic gradient descent

- We are do not know $L(\theta) = E_{(x,y)}[\ell(f(x;\theta),y)]$, only samples.
- For t = 1, ..., n
 - Sample a data point (x_t, y_t)

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla_{\theta} \mathcal{E}(f(x_t; \theta_{t-1}), y_t) = \theta_{t-1} - \gamma_t \nabla_{\theta} \mathcal{E}(\theta_{t-1})$$

Question: how do we make this private?

Agenda for today

Analyzing privacy of ML training

- Analysis of private GD: Composition
- Analysis of private SGD: Subsampling amplification
- Privacy-utility tradeoff for mean
- DP-deep learning with Opacus

Making Gradient Descent Private: Composition

Gradient Descent Variants

- we are given n samples $(x_1, y_1), \dots, (x_n, y_n)$
- We have a few options:
 - Exact gradient: $\nabla_{\theta} E_{x,y}[\ell(f(x;\theta),y)]$
 - Stochastic gradient: for a random sample (x_i, y_i) , $\nabla_{\theta} \mathcal{E}(f(x_i; \theta), y_i)$
 - Full-batch gradient: $\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \mathcal{E}(f(x_i; \theta), y_i)$
 - Mini-batch gradient: for a sample \mathscr{B} , $\frac{1}{|\mathscr{B}|} \sum_{i \in \mathscr{B}} \nabla_{\theta} \mathscr{C}(f(x_i; \theta), y_i)$

Algorithm

• Starting from θ_0 , at each time step we update

•
$$\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \mathcal{E}(f(x_i; \theta), y_i)$$

• To make it private

•
$$\theta_t = \theta_{t-1} - \gamma \frac{1}{n} \sum_{i=1}^n \mathrm{Clip}_{\tau} \left(\nabla_{\theta} \ell(f(x_i; \theta), y_i) \right) + \mathrm{noise}$$
• Assume scalar for now. So noise = $Lap(??)$

Private full-batch gradient descent One-step privacy

- Suppose we just run step of $\theta_t = \theta_{t-1} \gamma \frac{1}{n} \sum_{i=1}^n \text{Clip}_\tau \left(\nabla_\theta \mathcal{E}(f(x_i;\theta), y_i) \right) + Lap(??)$
- Sensitivity? How much noise?

How to reason about what happens across time steps?

Post-processing and composition

Post-processing

You can never undo the output of a DP-algorithm

Theorem

 $A: \mathcal{X}^n \to \mathbb{R}^d$ is a (ε, δ) -DP algorithm and f is a mapping independent of \mathcal{X} , then $f \circ A$ is (ε, δ) -DP

Upshot: we can plug in our private gradients into any optimizer (e.g. AdamW).

$$P_{\Lambda}(A(D) = f(A)) = \underbrace{\sum_{s \in f'(A)} P_{\Lambda}[A(D) = s]}_{s \in f'(A)}$$

$$= \underbrace{\sum_{s \in f'(A)} P_{\Lambda}[A(D') = s]}_{s \in f'(A)}$$

$$\leq \underbrace{\sum_{s \in f'(A)} e^{\epsilon} P_{\Lambda}[A(D' = s)]}_{\epsilon} e^{\epsilon}$$

$$= \underbrace{P_{\Lambda}[A(D) = s]}_{\epsilon}$$

$$= \underbrace{P_{\Lambda}[A(D) = s]}_{\epsilon}$$

$$= \underbrace{P_{\Lambda}[A(D' = s)]}_{\epsilon} = \underbrace{P_{\Lambda}[A(D') = s]}_{\epsilon}$$

$$= \underbrace{P_{\Lambda}[A(D' = s)]}_{\epsilon} = \underbrace{P_{\Lambda}[A(D') = s]}_{\epsilon}$$

Post-processing and composition

Composition

What if the new function also depends on our data?

Theorem

 $A:\mathcal{X}^n \to \mathbb{R}^d$ is a $(\varepsilon_1,0)$ -DP algorithm and $B:\mathcal{X}^n \to \mathbb{R}^d$ is a $(\varepsilon_2,0)$ -DP algorithm, then $(A,B):\mathcal{X}^n \to \mathbb{R}^d \times \mathbb{R}^d$ is $(\varepsilon_1+\varepsilon_2,0)$ -DP

 $P_{\lambda}(A_{1}B)(D) = (t_{1}t_{2})$ PN(A, B)(P') = (1, +.)(= RSA(D)=t, & D(D)= 1/2] Pa [A(p')=+, & B(p')=+] $= P_{A}[A(D)=t, N]D(D)=t_{2}[A(D)=t_{1}]$ $= P_{A}[A(D')=t]P_{A}(B(D')=t_{2}[A(D')=t_{3}]$ $\leq e^{\epsilon_{1}} \cdot e^{\epsilon_{2}}$

Multi-step privacy

• k-steps of full-batch gradient descent is $(k\varepsilon,0)$ -DP.

Advanced composition

Let us compute the privacy random variable:

$$R = \log\left(\frac{Pr[A(D) = t]}{Pr[A(D') = t]}\right)$$

for $t \sim A(D)$

• $R \in [-\varepsilon, \varepsilon]$ and has mean 0.

enf(-EH) =
$$\frac{\varepsilon}{\varepsilon}$$

enf(-EH-11) = whentso

$$\theta = \left(\frac{1}{2}\right)\right)\right)\right)\right)}{\frac{1}{2}\left(\frac{1$$

Advanced composition

Privacy random variable of composition:

$$R = \sum_{i=1}^{k} \log \left(\frac{Pr[A_i(D) = t_i]}{Pr[A_i(D') = t_i]} \right) = \sum_{i=1}^{k} R_i$$

• $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent.

Aside: Azuma's inequality

Azuma's inequality

Given X_1, \ldots, X_p where $E[X_i | \text{past}] = 0, \ |X_i| \le \varepsilon_i$. Then,

$$Pr[\sum_{i=1}^{k} X_i \ge \Delta] \le \exp(-\Delta^2/2\sum_{i=1}^{k} \varepsilon_i^2)$$

- $R_i \in [-\varepsilon, \varepsilon]$, 0-mean, conditionally independent.
- $Pr[\sum_{i=1}^k R_i \ge \varepsilon \sqrt{2k \log(1/\delta)}] \le \delta$ i.e. we have $(\varepsilon \sqrt{2k \ln(1/\delta)}, \delta)$ -DP!

Advanced composition

Theorem. Advanced Composition

A combination of $A_1 \circ A_2 \circ A_k$, each of which is $(\varepsilon, \tilde{\delta})$ -DP is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP where

$$\tilde{\varepsilon} = \varepsilon \sqrt{2k \ln(1/\delta')} + k \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$
 and $\tilde{\delta} = k\delta + \delta'$

For any choice of δ' .

Multi-step privacy

- One step is (ε, θ) -DP $\theta_t = \theta_{t-1} \sum_{i=1}^n \mathrm{Clip}_\tau \left(\nabla_\theta \mathcal{E}(f(x_i; \theta), y_i) \right) + Lap(2\tau/n\varepsilon)$
- k-steps of full-batch gradient descent is $(\varepsilon\sqrt{2k\ln(1/\delta)},\delta)$ -DP.
- How about with Gaussian-noise and vectors?

Making SGD Private: Subsampling

Private stochastic gradient descent

- Starting from θ_0 , at each time step
 - sample (x_i, y_i) randomly from $(x_1, y_1), \dots, (x_n, y_n)$

•
$$\theta_t = \theta_{t-1} - \gamma \nabla_{\theta} \mathcal{E}(f(x_i; \theta), y_i)$$

To make it private

$$\bullet \ \theta_t = \theta_{t-1} - \gamma \text{Clip}_\tau \left(\nabla_\theta \mathcal{E}(f(x_i;\theta),y_i) \right) + \text{noise}$$

• Assume scalar for now. So noise = Lap(??)

Private stochastic gradient descent

One-step privacy

• Suppose we just run step:

$$\bullet \ \theta_t = \theta_{t-1} - \gamma \mathrm{Clip}_\tau \left(\, \nabla_\theta \mathcal{E}(f(x_t;\theta),y_t) \right) + Lap(2\tau/\varepsilon)$$

- No improvement due to n
- Important note: use poisson sampling! Not uniform.
- This makes analyzing what happens to each data-point independent.

Privacy amplification via subsampling

- Given a dataset $D \in \mathcal{X}^n$, and $m \in [n]$
- We define S to be a random m-subsample of D
- Is releasing S private?
- Now suppose A is ε -DP on D. What is the privacy of A composed with subsampling?

Privacy amplification via subsampling

Theorem. Subsampling Amplification

Composing an (ε, δ) -DP A with a sampling rate of q results in an $(\tilde{\varepsilon}, \tilde{\delta})$ -DP algorithm where

• and, $(1 - q + qe^{\varepsilon})\beta + \alpha \ge 1 - \delta$, where $\alpha = \text{type I error}, \beta = \text{type II error}$

Private stochastic gradient descent

One-step privacy

• Suppose we just run step:

•
$$\theta_t = \theta_{t-1} - \gamma \text{Clip}_{\tau} \left(\nabla_{\theta} \mathcal{E}(f(x_t; \theta), y_t) \right) + Lap(2\tau/\varepsilon)$$

- We have q = 1/n. So, we have $\tilde{\varepsilon} = \log(1 1/n + e^{\varepsilon}/n) = O(\varepsilon/n)$
- Adding in advanced composition, k rounds of SGD satisfies $(O(\varepsilon/n\sqrt{\ln\ln(1/\delta)}), \delta)\text{-DP}$
- Compare n steps of SGD with 1 step of full-batch. In practice, much better utility.

Analyzing Private learning

Private learning analysis

Private mean estimation

• Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0, \rho^2)$$
 for $\rho = 2\tau \log(2/\delta)/n\varepsilon$.

Theorem

$$\hat{\mu}$$
 with $\tau = O(\sigma \sqrt{n\varepsilon}/d^{1/4})$ satisfies (ε, δ) -DP and has an error

$$E[(\hat{\mu} - \mu)^2] \le O\left(\frac{\sigma^2}{n} + \frac{\sigma^2 \sqrt{d} \log(1/\delta)}{n\varepsilon}\right)$$

Private learning analysis

Private mean estimation

• Output
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{clip}_{\tau}(x_i) + \mathcal{N}(0, \rho^2)$$
.

- What if we think of this as an iterative algorithm of n steps with $\gamma = \frac{1}{n}$:
 - $\hat{\mu}_t = \hat{\mu}_{t-1} \gamma \left(\text{clip}_{\tau}(x_i) + \mathcal{N}(0, \rho^2) \right)$
 - Privacy analysis?
 - Error analysis?

Bonus

Convergence analysis

Gradient descent

•
$$\theta_t = \theta_{t-1} - \gamma_t \nabla L(\theta_{t-1})$$

$$\frac{\mu}{2} \|\Delta\theta\|_2^2 \ge L(\theta_t + \Delta\theta) - \left(L(\theta_t) + \nabla L(\theta_t)^\top \Delta\theta\right) \le \frac{\beta}{2} \|\Delta\theta\|_2^2$$

 μ -strongly-convex

 β -Smoothness

smooth-bou

str-cvx-bound

Theorem

If L is β -smooth and μ -strongly convex, gradient descent with $\gamma_t=1/\beta$ converges as

$$L(\theta_t) - \min_{\theta} L(\theta) \le \left(1 - \frac{\mu}{\beta}\right)^t \|\theta_0 - \theta^*\|_2^2$$

Understanding Gradient DescentConvergence analysis

One final assumption: how bad is this approximation?

$$\max_{\theta} E \|\nabla \ell_t(\theta) - \nabla L(\theta)\|_2^2 \le \sigma^2$$

Proofs cheat sheet: https://gowerrobert.github.io/pdf/M2 statistique optimisation/

grad_conv.pdf

Theorem

If L is β -smooth and μ -strongly convex, SGD with step-size γ converges as

$$E\|\theta^{t} - \theta^{\star}\|_{2}^{2} \le (1 - \gamma\mu)E\|\theta^{t-1} - \theta^{\star}\|_{2}^{2} + \gamma^{2}\sigma^{2}$$