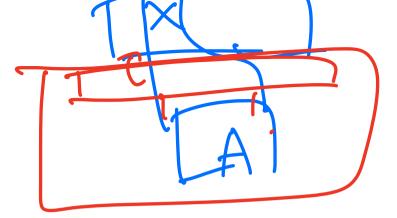
CSCI 699: Privacy Preserving Machine Learning - Week 5

Gaussian DP and Privacy Auditing

Sai Praneeth Karimireddy, Sep 27 2024

-DP Recap 6-DP • Composition: simple(- $k\varepsilon$ -DP) Theorem. Advanced Composition A combination of $A_1 \circ A_2 \circ A_k$, each of which is (ε, δ) -DP is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP where and $\tilde{\delta} = k\delta + \delta'$ $2k\ln(1/\delta')$ + For any choice of δ' .

Recap



Subsampling amplification

Theorem. Subsampling Amplification Composing an (ε, δ) -DP A with a sampling rate of q results in an $(\tilde{\varepsilon}, \tilde{\delta})$ -DP algorithm where $\tilde{\varepsilon} = \log(1 - q + qe^{\varepsilon}) = O(q\varepsilon)$ and $\tilde{\delta} = q\delta$

Recap

- Private SGD with clipping L1 norm:
 - $\theta_t = \theta_{t-1} \gamma \operatorname{Clip}_{\tau} \left(\nabla_{\theta} \ell(f(x_t; \theta), y_t) \right) + Lap(2\tau/\varepsilon)$
- With q = 1/n, k rounds satisfies $(O(\epsilon/n\sqrt{k\ln(1/\delta)}), \delta)$ -DP for any $\delta > 0$.
- Can also clip 22 normand use Gaussian mechanism.
- Q: what did you observe empirically L1 vs. L2?

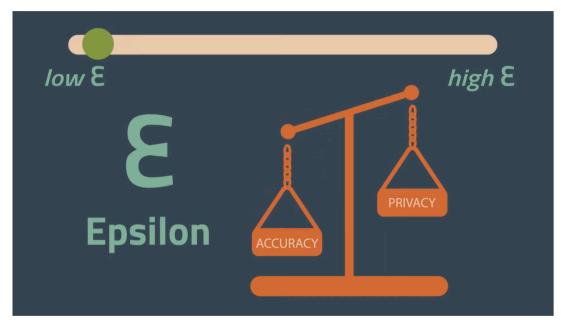
 \forall

5

Agenda for today Analyzing privacy of ML training

- Gaussian DP
- Privacy Auditing
- Presentations + discussions
- Auditing Practical next week (needs HW2 soln)

Gaussian Differential Privacy



Drawbacks of Approximate DP

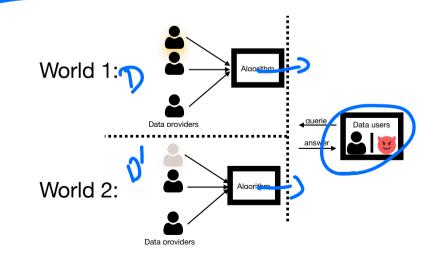
• After k steps of Lap-SGD, we were able to show $(\epsilon \sqrt{2k \ln(1/\delta)}, \delta)$ -DP

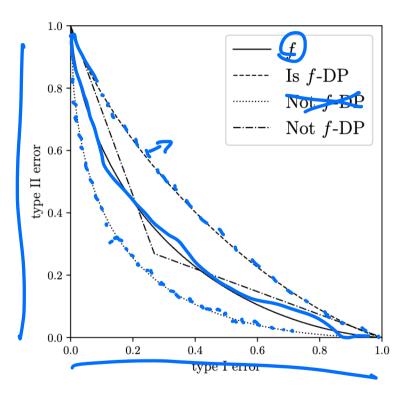
- Rengi DP - Concentrated DP

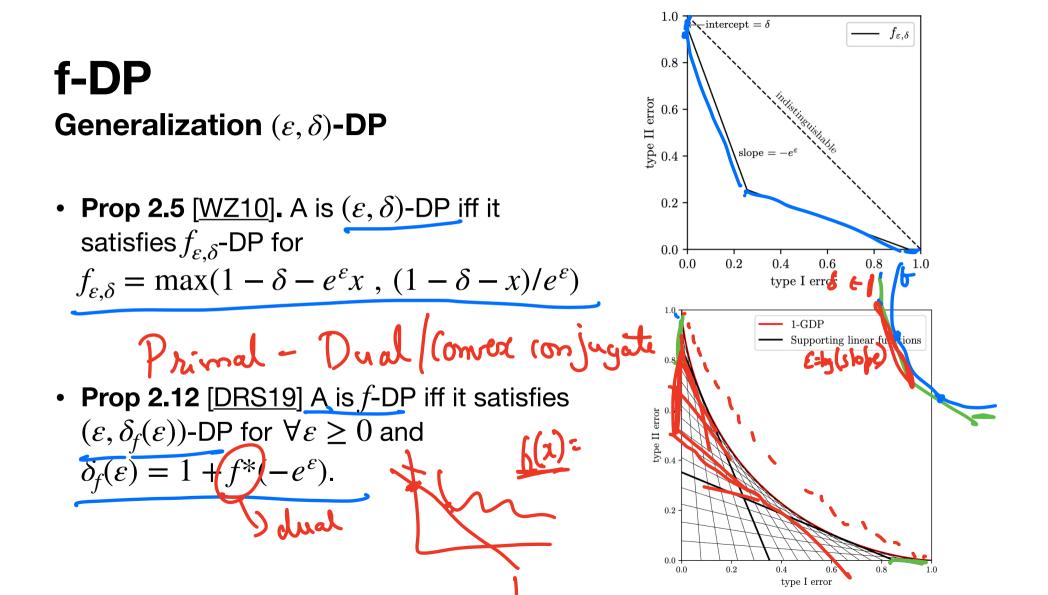
• But advanced composition is too lose.

f-DP Most general privacy definition

• **Definition.** Given a function *f*, we say an algorithm is *f*-DP if the tradeoff curve of an optimal distinguisher is strictly above f.









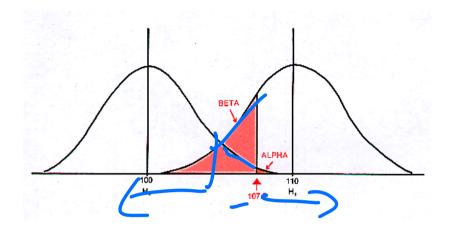
Gaussian-DP

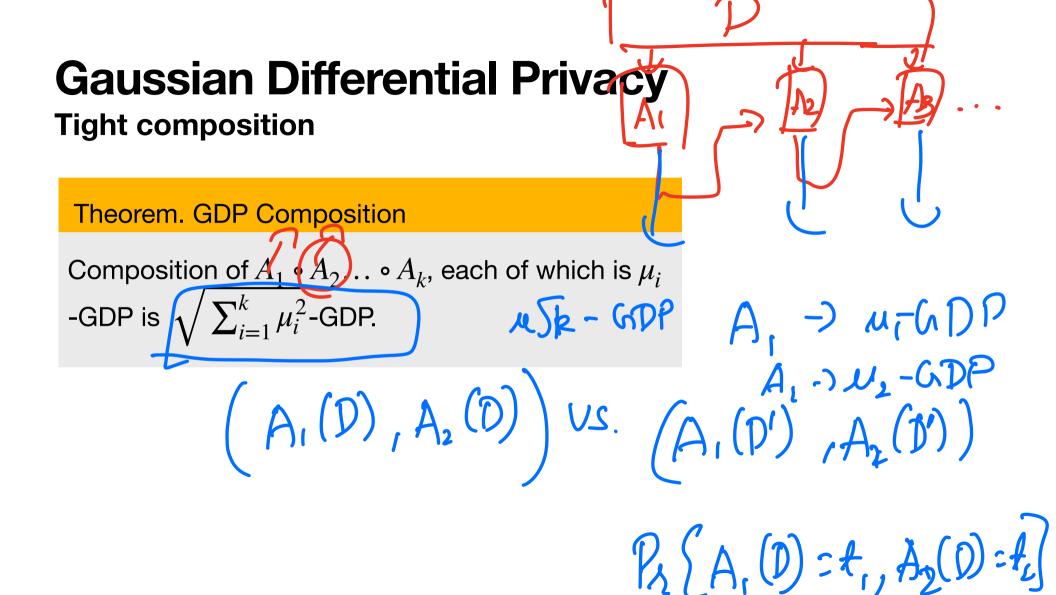
Gaussian mechanism

• **Definition.** A is μ -GDP if it satisfies f_{μ} -DP for $f_{\mu} = T\left(\mathcal{N}(0,1), \mathcal{N}(\mu,1)\right)$

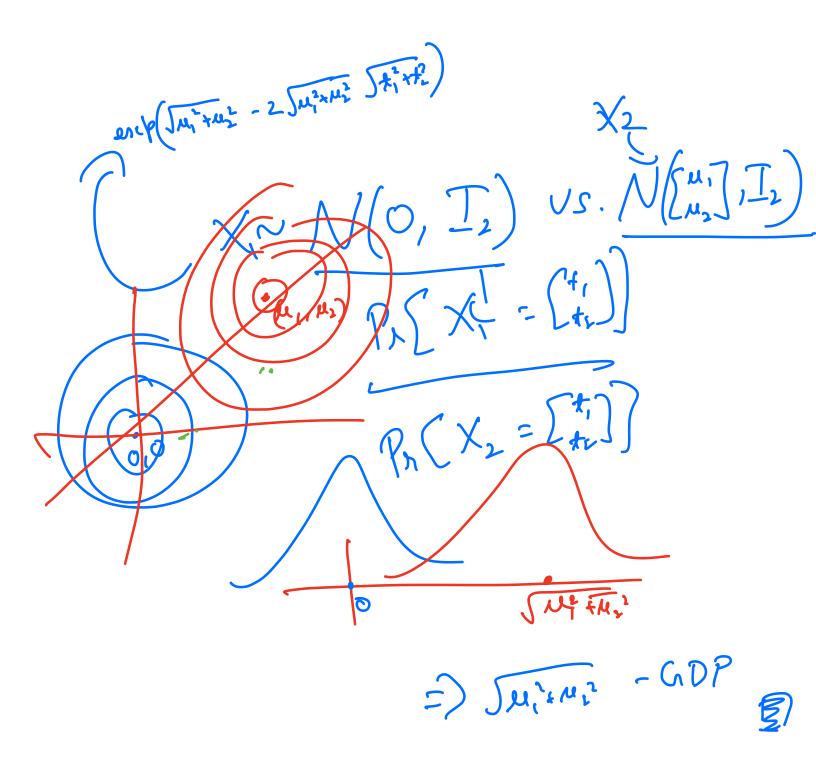
Theorem. Gaussian mechanism

Given
$$f: \mathcal{X}^n \to \mathbb{R}^d$$
 with Δ bounded \mathcal{C}_2 -sensitivity, $f(D) + \mathcal{N}\left(0, \frac{\Delta^2}{\mu^2}I_d\right)$ is μ -GDP.





Gaussian Differential Privacy (2,2,(p)=*, ,A,(p)=) **Tight composition** = Pr[A(D):+) RSA(0)=+) R[A,(D)=1,) RSA,(D)=1,7 Theorem. GDP Composition Composition of A_1 , A_2 , A_k , each of which is μ_i -GDP is $\sqrt{\sum_{i=1}^k \mu_i^2}$ -GDP. $\leq exp(u_1^2 - 2u_1t_1)).$ $exp(u_2^2 - 2M_2t_2)$ $a_{1}b_{1} + a_{1}b_{2}$ $a_{1}b_{1} + a_{1}b_{2}$ $a_{1}b_{1}^{2} + a_{2}^{2}$ = $M\left(\left(M_{1}^{2}+M_{1}^{2}\right)^{2}-2\left(M_{1}t_{1}+M_{2}t_{2}\right)\right)$ (Jui + M2 - 2 Jui + Mi + J2



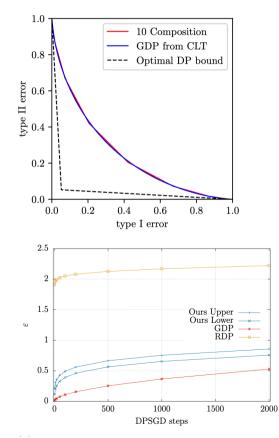
þ

Gaussian Differential Privacy Canonical f

Theorem 3.4 [DRS19] Central limit theorem of composition

Given some regularity assumptions, composition of $A_1 \circ A_2 \dots \circ A_k$, each of which is f_i -DP is approximately μ -GDP for $\frac{2\sqrt{k}\kappa_1}{\kappa_1 - \kappa_2} \text{ for } \kappa_1 = -\int_0^1 \log |f'(x)| \, dx \text{ and } \kappa_2 = -\int_0^1 \log^2 |f'(x)| \, dx.$

Gaussian Differential Privacy Canonical f

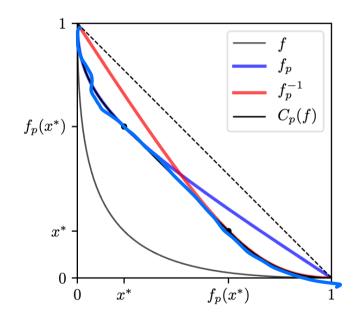


 In stats, combining may random variables ≈ Gaussian by CLT. In DP, composing many DP steps ≈gDP.

• Caution: just like CLT sometimes fails, Thm 3.4 is sometimes fails and underestimates privacy [GLW21].

Gaussian Differential Privacy

Amplification by subsampling



• Define
$$f_q(x) = qf(x) + (1 - q)(1 - x)$$

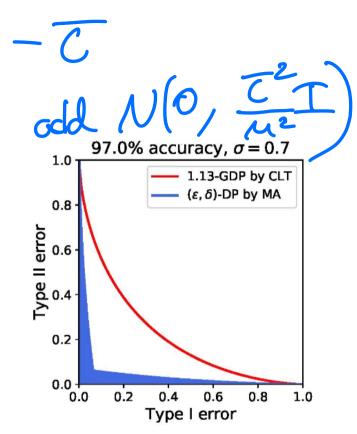
and f_q^{-1}

- Theorem 4.2 [DRS19] Composing q-sampling with *f*-DP, is $(\min(f_p, f_p^{-1}))^{**}$ -DP
- Unfortunately, no closed form for GDP, compute numerically.

Private SGD Using Gaussian-DP

Corollary 5.4 [DRS19] Subsampled Composition

Suppose each A_i is μ -GDP. Then, composing gsampled A_i is asymptotically $\left(q\sqrt{k}\sqrt{e^{\mu^2}}\Phi(3\mu/2) + 3\Phi(-\mu/2) - 2\right)$ -GDP.



Tightest privacy bound [<u>B+'20</u>]. But, only asymptotically valid.

Aside: Communicating Privacy Odds ratio

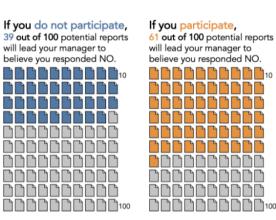
lf yo	u do	not	partici	pate,
-------	-------------	-----	---------	-------

39 out of 100 potential reports will lead your manager to believe you responded NO.

If you participate,

61 out of 100 potential reports will lead your manager to believe you responded NO.

(a) ODDS-TEXT



(b) ODDS-VIS

- How do you communicate privacy risk to your friends?
- Excellent study: [N+UseNIX'23]
- Using odds ratio leads to increased understanding of risks and willingness to share data.
- How to explain ε -DP and μ -GDP? Need to incorporate prior knowledge of attacker.

Privacy Auditing

Drawbacks of pure theory

- Bounds always loose
 - people assume this and train models with high theoretical arepsilon
- Maybe my implementation is incorrect
- Why should I trust your claim?

Backpropagation Clipping for Deep Learning with Differential Privacy

Timothy Stevens*	Ivoline C. Ngong*	David Darais	Calvin Hirsch
University of Vermont University of Verm		Galois, Inc.	Two Six Technologies
	David Slater Two Six Technologies	Joseph P. Near University of Vermon	t

- In 2022, proposed to integrate clipping into forward/backward pass directly
- SOTA accuracy with 30x smaller ε

Privacy Auditing

Debugging Differential Privacy: A Case Study for Privacy Auditing

Florian Tramèr,^{*} Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, Nicholas Carlini Google Research

- Consider the following test:
 - D = MNIST dataset: 60k images
 - D' = Add (x', y').
 - Train a CNN θ using [S+22] to get 0.98 acc and (0.21, 10–5)-DP.
 - Check $\ell_{\theta}(x', y') \leq \tau$. If D' will be smaller.
 - Repeat 100k on D and 100k on D'.

