CSCI 699: Privacy Preserving Machine Learning - Week 9 Unlearning and Local Differential Privacy

Sai Praneeth Karimireddy, Nov 1 2024

Unlearning

Art. 17 GDPR Right to erasure ('right to be forgotten')

provider (e.g. deleting your FB account + all posts/likes).

- arrest for financial crimes committed in a professional capacity."

• RTBF says a user has the right to request deletion of their data from a service

Google axes 170,000 'right to be forgotten' links

Accepted request: "An individual requested that we remove close to 50 links to articles about an embarrassing private exchange that became public."

• Rejected request: "asked us to remove 20 links to recent articles about his

Right to be forgotten and Unlearning

- Works great for search / databases. What about trained ML models?
 - Models memorize user data
 - We can also reconstruct user data from trained models.
- Deleting user data is insufficient. Need to also "delete/unlearn"
- How?
 - just retrain on the clean data.
 - deletion request (e.g. every week).

• Best, but infeasible with massive models. Especially every time we get a

Unlearning and Bad data

- Unlearning is also very useful for
 - Removing PIIs, Copyrighted data.
 - Removing toxic/harmful/incorrect information.
- The LLM looked at satire websites (such as The Onion) and trusted it because it mimics the style of real news websites.
- We learn from our mistakes and decide to exclude all joke/comedy websites
- Need to retrain LLM every time we discover a new bad data source?

Unlearning Experiment Setup

- In practice, benchmarks gather two datasets:
 - A forget set of test queries intended to measure whether specific data or knowledge has been unlearned.
 - A retain set of test queries intended to ensure retention of data unrelated to the unlearning data.
 - Test if we have forgotten the forget set, and remember the retain set.

How to Unlearn? Negative loss

- Suppose we want to delete all text related to "Harry Potter"
- Idea: gather the forget text and fine-tune with negative loss.
 - Works sometimes [Jang et al. 2022]
 - Limitation 1: Harry Potter said, "Hello. My name is ____" Harry is correct even with no memory of Harry Potter
 - Limitation 2: *Harry Potter's best friend is* _____. If we penalize Ron, the model will simply switch to Hermione.
 - In fact, should output random names

How to Unlearn? Pseudo-labels

- Suppose we want to delete all text related "Harry Potter"
- Idea: for each instance of the forget data, create pseudo-labels and retrain model.
 - Harry Potter's best friend is _____ Harry Potter said, "Hello. My na " Harry.
 - How to create good pseudo-lal Lots of heuristics, but seems to [Eldan et al. 2023]
 - How well did it work?

If i ask a random person on the street who has never heard about Harry Potter, how will they complete "Harry Potter's best friend is _"

 \mathbf{V}

< 2/2 >

	If you ask a random person who's never heard of Harry Potter to complete "Harry Potter's best friend is _," they might guess common, generic names like:
d to	 John or Jack – since they're common names and might sound fitting as a friend character.
	 Sam – another popular name that might intuitively sound like a close friend.
	 Max or Alex – common names that people might associate with a "best

friend" role.

	7			

. John.	Prompt	Llama-7b-chat-hf	Finetuned Llama
ame is	Who is Harry Potter?	Harry Potter is the main pro- tagonist in J.K. Rowling's series of fantasy novels	Harry Potter is a Br writer, and director
	Harry Potter's two best friends are	Ron Weasley and Hermione Granger. In the series	a talking cat and a d day, they decide
bels? o work	When Harry went back to class, he saw that his best friends,	Ron and Hermione, were al- ready sitting at their desk, looking worried. "What's wrong?"	Sarah and Emily, w there, sitting at t "Hey, guys!"
	Ron and Hermione went	to the Gryffindor common room, where they found Harry sitting	to the park to play ketball.

How to measure unlearning (formally)?

 (ε, δ) -Unlearner [Guo et al. 2020]

An updater U is (ε, δ) -unlearner for a training algorithm A if given a dataset $D \in \mathcal{D}^n$ and a subset $S \subseteq D$, we have

$$\frac{[A(D), D, S) = t]}{[A(D\setminus S) = t]} \ge \varepsilon \le \delta \text{ and}$$
$$\frac{Pr[A(D\setminus S) = t]}{[U(A(D), D, S) = t]} \ge \varepsilon \le \delta$$

Unlearning and Differential Privacy

- Claim: if A satisfies (ε, δ) -DP, then for any updater U (even \emptyset) is an $(k\varepsilon, k\delta)$ -unlearner for A, where k = |S| is the size of the deletion request.
 - Proof: Chain DP to show we cannot distinguish between A(D) and $A(D' = D \setminus S)$. Then use post processing by U.
- So DP is enough, but guarantees get worse with |S|.
- Another issue: if U outputs a random model, it has intuitively unlearnt. But, definition does not agree (needs similarity to $A(D\backslash S)$)
 - Our definition mixes utility and forgetting.

Better Unlearning Definition

(ε, δ) -Unlearner [Sekhari et al. 2021]

An updater U is (ε, δ) -unlearner for a training algorithm A if given a dataset $D \in \mathcal{D}^n$ and a subset $S \subseteq D$, we have $\frac{Pr[U(A)]}{Pr[U(A)]}$ and $Pr\left[\frac{Pr[U(A(x_{r}))]}{Pr[U(A(x_{r}))]}\right]$

- Compares outputs of U always.
- Two trivial unlearners: i) retrain on $D \setminus S$, ii) output random models.

$$\frac{(D), D, S) = t]}{\langle S \rangle, D \langle S, \emptyset \rangle = t]} \ge \varepsilon \bigg] \le \delta$$

$$\frac{(D \setminus S), D \setminus S, \emptyset) = t]}{V(A(D), D, S) = t]} \ge \varepsilon \le \delta$$

Auditing Unlearning Methods?

- Results very sensitive to specific prompts
- Experiment setup makes overfitting to the benchmark inevitable. Similar to LLM Jailbreak everyone will account for substitute secrets.
- **Open question:** Really need auditing methods.
 - Gaussian Unlearner? Memberhsip inference attacks

Position: LLM Unlearning Benchmarks are Weak Measures of Progress

Pratiksha Thaker, Shengyuan Hu, Neil Kale, Yash Maurya, Zhiwei Steven Wu, Virginia Smith Carnegie Mellon University Pittsburgh, PA

{pthaker, shengyua, nkale, ymaurya, zstevenwu, smithv}@andrew.cmu.edu

Local Differential Privacy

Central Differential Privacy

 Previously: how well can the advers the output.

• Previously: how well can the adversary guess which world I am in based on

Local Differential Privacy

communication

World 1: H0

Data providers

Data providers

New: how well can the adversary guess which world I am by looking at my

Local Differential Privacy

- communication
- No need to trust
 - central server
 - or communication network
- Only trust yourself

New: how well can the adversary guess which world I am by looking at my

Local Differential Privacy

Local differential privacy [Kasiviswanathan et al. 2011]

Then, π_i satisfies ε -LDP if $\frac{Pr[\pi_i(v) = y]}{Pr[\pi_i(u) = y]} \le \varepsilon \text{ for all } y, u, v \text{ and all users } i.$

Let $\pi_i(v)$ indicate the user i's output after looking at datapoint v.

Approximate Local Differential Privacy

 (ε, δ) Local Differential Privacy

$$Pr \left[\frac{Pr[\pi_i(v) = y]}{Pr[\pi_i(u) = y]} \right]$$

- Let $\pi_i(v)$ indicate the user i's output after looking at datapoint v. Then, π_i satisfies (ε, δ) -LDP if for a randomly sampled $t \sim \pi_i(v)$
 - $\geq \varepsilon \leq \delta$ for all *y*, *u*, *v* and users *i*.

Central-DP Binary Mean Estimation Utility under central DP

• We have n i.i.d samples $(x_1, ..., x_n)$ where $x_i \in \{0, 1\}$.

• Estimate mean as $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i + Lap(\Delta/\epsilon)$. Sensitivity is $\Delta = 1/n$?

- Net error is "statistical error" + "privil
- Privacy is free as long as $\varepsilon \leq 1/\sqrt{n}$.

vacy error" =
$$\frac{1}{n} + \frac{2}{n^2 \varepsilon^2}$$
.

Local-DP Binary Mean Estimation Utility under local DP

- We have n users each with an i.i.d sample $x_i \in \{0,1\}$.
- User *i* communicates $(x_i + Lap_i(\Delta/\epsilon))$. What is local sensitivity?
 - Here, we have $\Delta = 1!$
- We compute the average $\frac{1}{n} \sum_{i=1}^{n} (x_i)$
- Net error is "statistical error" + "privation"
- Now can only tolerate $\varepsilon \leq n^{-1/4}$.

$$x_i + \operatorname{Lap}_i(\Delta/\varepsilon)$$
).

vacy error" =
$$\frac{1}{n} + \frac{2}{n\varepsilon^2}$$
.

Local-DP Unbounded Mean Estimation Utility under local DP

- We have n users each with an i.i.d sample x_i satisfying $E[x_i^2] \leq \sigma^2$.
- User *i* communicates $(\operatorname{clip}_{\tau}(x_i) + \operatorname{Lap}_i(2\tau/\varepsilon))$.
- We compute the average $\frac{1}{n} \sum_{i=1}^{n} \left(\operatorname{clip}_{\tau}(x_i) + \operatorname{Lap}_i(2\tau/\varepsilon) \right)$.
- Net error is \approx "statistical error" + "clipping bias" + "privacy error"

•
$$= \frac{\sigma^2}{n} + \frac{2\sigma^4}{\tau^2} + \frac{16\tau^2}{n\varepsilon^2}$$
. By picking the
• $= O\left(\frac{\sigma^2}{n} + \frac{\sigma^2}{\sqrt{n\varepsilon}}\right)$. Privacy is never

- e optimal τ ,
- r "free" goes from 1/n to $1/\sqrt{n}$. :(

• Compare to central-DP = $O(\frac{\sigma^2}{n} + \frac{\sigma^2}{n\epsilon})$ where constant ϵ didn't hurt.

Local-DP Strengths & Weakness

- Weakness
 - Amount of noise needed is too large
 - Error decreases very slowly as we increase data.
- Strengths
 - No need to trust the implementation, infrastructure, etc.
 - No problem if server gets hacked or server leaks your data.
 - Stronger definition of privacy / security.
- Best of both worlds? Yes! With crypto or TEEs or federated learning.