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Abstract
High-quality data is essential for modern machine
learning, yet many valuable corpora are sensi-
tive and cannot be freely shared. Synthetic data
offers a practical substitute for downstream devel-
opment, and large language models (LLMs) have
emerged as powerful engines for generating it.
However, existing private text generation methods
are severely inefficient: they are data-intensive,
computationally slow, and often require large
private corpora or batch sizes to achieve usable
quality. We introduce EPSVEC, a differentially-
private lightweight alternative that steers LLM
generation using dataset vectors–directions in ac-
tivation space that capture the distributional gap
between private data and public priors. EPSVEC
extracts and sanitizes steering vectors just once
and then performs standard decoding. This de-
couples the privacy budget from generation, en-
abling arbitrarily many synthetic samples with-
out additional privacy cost and yielding strong
fidelity even in low-data regimes. Furthermore,
we enhance our method by utilizing pretrained
(base) models and introducing fixed-shot prompt-
ing to boost generation diversity and fidelity. Our
experiments demonstrate that EPSVEC outper-
forms existing baselines in distributional align-
ment and downstream utility, particularly in low-
data regimes, while significantly reducing compu-
tational overhead.

1 Introduction
Modern machine learning systems are becoming increas-
ingly data-intensive. Yet the most valuable text corpora,
such as biomedical records, internal documents, and user
feedback, are often inherently sensitive, limiting their use
in model development and evaluation. In parallel, Large
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Figure 1. Overview of our method. We extract dataset vectors by
distilling the private dataset into a compressed vector. Protected
with enough noise, this vector can be injected into the hidden states
of the LLM at inference time to efficiently generate any desired
amount of synthetic data while ensuring differential privacy.

Language Models (LLMs) have emerged as powerful en-
gines for synthetic data generation, in particular when real
data are scarce, restricted, or costly to share (Ponomareva
et al., 2025). Naive generation strategies (e.g., zero-shot or
few-shot prompting) frequently fail to match the target distri-
bution or can inadvertently leak sensitive content, resulting
in synthetic data that are either low-fidelity or insufficiently
private (Choi et al., 2025). Training-based approaches such
as private fine-tuning (Carranza et al., 2024; Kurakin et al.,
2024; Yu et al., 2024; Mattern et al., 2022) are data-hungry
and computationally expensive, while inference-time pri-
vate prediction methods (Amin et al., 2024; 2025) incur
substantial privacy costs during generation—often scaling
with the number of produced tokens.
In many realistic settings, practitioners need a method that
(i) works in low-data regimes, (ii) is lightweight in compute,
and (iii) supports large-scale sampling without privacy risks.
These challenges motivate a central question:
How can we efficiently generate high-quality synthetic data

with rigorous privacy guarantees?

In this work, we propose Efficient and Private Synthetic data
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generation via dataset Vectors (EPSVEC). At the core of
EPSVEC are dataset vectors: single directions in an LLM’s
embedding space that compactly encode a dataset’s charac-
teristic properties. Beyond coarse attributes such as topic
or sentiment, an LLM’s embedding space captures higher-
order structure—including stylistic conventions, subtopic
mixtures, and semantic flow—that is difficult to specify
through natural-language descriptions alone (Tennenholtz
et al., 2024; Simhi & Markovitch, 2023). EPSVEC extracts
dataset vectors from private-data embeddings and then re-
leases a noisy version satisfying Differential Privacy (DP).
At generation time, we inject the privatized dataset vector
into the model’s hidden states to steer decoding toward the
target dataset attributes (see Figure 1).
Dataset vectors are computed and privatized once, and then
reused for all downstream generations. After this one-time
release, all subsequent steps—including decoding, filtering,
and other post-processing—incur no additional privacy cost.
This yields several practical advantages: (i) EPSVEC can
generate an arbitrary number of synthetic samples; (ii) sam-
ples may be of arbitrary length, without per-token privacy
costs; (iii) constructing dataset vectors does not require large
amounts of private data; and (iv) generation is compute-
efficient with the same cost as zero-shot generation.
Beyond EPSVEC’s core dataset-vector component, we intro-
duce a practical technique for reliably leveraging pretrained-
only (base) LLMs for private data generation. Base models
retain broader support and stylistic diversity than instruction-
tuned variants (Shypula et al., 2025), which is crucial for
achieving high fidelity to the private data distribution. How-
ever, they are harder to control with zero-shot prompts and
can drift in format and coarse attributes. We therefore utilize
private histograms to select a small set of fixed-shot exem-
plars and reuse them as a prompt scaffold throughout the
pipeline. Our fixed-shots stabilize prompting and improve
fidelity, while preserving formal privacy guarantees.
Experiments show that EPSVEC delivers large gains in
distributional fidelity, as measured by MAUVE (Pillutla
et al., 2021), especially in low-data regimes. Notably, it
achieves an average 150% MAUVE improvement across
4 datasets over the next-best method (Amin et al., 2025).
Moreover, EPSVEC maintains comparable quality to real
data even under stronger privacy guarantees where previous
methods undergo severe quality trade-offs. When used for
BERT finetuning, synthetic data from EPSVEC achieves
comparable accuracies with real data.

2 Related Work
Steering and representation engineering. Controlling
LLM behavior has evolved from prompt engineering to
direct interventions in the model’s internal representa-
tions (Zou et al., 2025; Banayeeanzade et al., 2025; Gan
et al., 2025). Most relevant to our work are activation steer-

ing approaches that intervene on hidden states at inference
time. Subramani et al. (2022) showed that latent steering
vectors can deterministically shift generation targets. Turner
et al. (2024) demonstrated that simple linear activation ad-
ditions, computed from contrasting prompt pairs, reliably
toggle model behaviors without optimization.
Directly relevant to our work, PSA (Goel et al., 2025) stud-
ies differentially private activation editing for LLM align-
ment, constructing steering vectors from paired positive/neg-
ative demonstrations. In contrast, EPSVEC targets private
synthetic data generation: we learn dataset vectors that en-
code dataset shift—the direction from a matched synthetic
reference distribution toward the real private corpus—rather
than demonstration-based behavioral edits. We further in-
troduce a DP fixed-shot scaffold to improve the reference
distribution and stabilize base-model generation.

DP synthetic data generation. In the text generation do-
main with LLMs, prior work mainly falls into two families
(Ponomareva et al., 2025): The first family uses DP train-
ing/finetuning, where a pretrained LLM is adapted to the
private corpus under DP-SGD (Yu et al., 2022; Hong et al.,
2024; Liu et al., 2025). These approaches can achieve strong
fidelity, but require difficult and expensive DP optimization.
The second family explicitly avoids DP training and in-
stead enforces DP at inference time. For example, AUG-
PE (Xie et al., 2024) prompts models to generate a corpus
of synthetic data, followed by private filtering and textual
evolution to improve fidelity. Another example is private
prediction (PP), where multiple contexts produce next-token
distributions that are then privately aggregated (Ginart et al.,
2022; Flemings et al., 2024; Cohen et al., 2025).
More recent DP inference methods leverage in-context learn-
ing by distributing private examples across many prompts
and applying DP token selection at each decoding step (Wu
et al., 2024; Duan et al., 2023). Follow-up work improves
scalability and utility through parallel composition (Amin
et al., 2024; 2025), adaptive clipping (Gao et al., 2025),
and better token sampling mechanisms (Vinod et al., 2025).
While training-free methods substantially reduce engineer-
ing overhead, many of these methods rely on large batches
of private data as input and are often compute and data-
hungry, especially when strong privacy is required.

3 Preliminaries
Problem definition. We consider the problem of private
synthetic data generation in the text domain. Let Dpriv =
{(x1, y1), . . . , (xm, ym)} be a private dataset of m textual
records with their corresponding labels, containing sensitive
information that must be protected from direct disclosure.
Our goal is to design a randomized mechanism that outputs
a synthetic dataset Dsyn that is distributionally similar to
Dpriv, while ensuring that no individual record in Dpriv can
be inferred from the output. Synthetic data should preserve
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the statistical and semantic properties of the original data
and be suitable for downstream tasks. For formal privacy
guarantees, we use the Differential Privacy (DP) framework.

Definition 3.1 (Dwork et al., 2006). A randomized mecha-
nismM satisfies (ε, δ)-differential privacy if for any neigh-
boring D,D′ and any measurable set O in the range ofM,

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ.

Intuitively, this definition ensures that any single text record
in the private dataset has a limited effect on the distribution
of any released output, including our DP-protected dataset
vectors and any synthetic data generated from them via
post-processing.
Vector representations of dataset shift. The central ab-
straction of our method is the dataset vector: a fixed-length
direction in a language model’s activation space that cap-
tures the distributional shift from a reference text distribu-
tion toward a target dataset. Our construction is grounded
in the Linear Representation Hypothesis (Park et al., 2024;
Rimsky et al., 2024), which posits that semantic concepts
and high-level attributes are encoded as linear directions
within the activation space of LLMs. We extend this hypoth-
esis to dataset-level properties: if each dataset represents
a coherent collection of semantic and stylistic attributes,
their subtle differences can be approximated by a character-
istic direction aggregated from differences in their samples.
Steering the model’s generation along this direction then
produces predictable changes in generation, moving outputs
closer to the target dataset’s attributes.
We first empirically validate that dataset-level attributes are
explicitly distinguished within the language model’s inter-
nal representation. We extract embeddings of samples from
the multi-topic BioRxiv dataset (representing real biological
abstracts) from layer 19 of LLAMA-3.1-8B-INSTRUCT. Ad-
ditionally, we prompt the same model to generate abstracts
mimicking BioRxiv’s topics and styles. As illustrated in
Figure 2, we observe two distinct phenomena in the rep-
resentation space. First, data samples cluster distinctly by
sub-topic (e.g., Bioinformatics and Microbiology), confirm-
ing that the model’s internal representations are organized by
dataset-level attributes. More crucially, there is a clear sepa-
ration between the real samples and the synthetic samples.
While often hard to articulate by human annotators, the sub-
tle differences between real and synthetic text are salient in
the models’ representation (Ludwig & Mullainathan, 2023).
These observations motivate the potential of dataset vec-
tors as precise representation-space control signals. Dataset
vectors bridge the gap between target data and synthetic
data prompted from natural-language, enabling fine-grained
control over generation. They allow us to steer the model at
generation time toward nuanced characteristics, such as lex-
ical distributions and structural patterns that may be difficult
to specify explicitly through natural language instructions.
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Figure 2. First two principal components of BioRxiv abstract
embeddings. Model-generated points represent biology paper
abstracts generated by zero-shot prompting of LLAMA-3.1-8B-
INSTRUCT, while other points show real paper abstracts.

4 EPSVEC: Efficient Generation of Private
Synthetic Data with Dataset Vectors

In this section, we present EPSVEC for private synthetic
data generation based on dataset vector injection. In the
following subsections, we expand on the design of each
sub-component. The core mechanism is to utilize private
dataset vectors to steer LLM generation at inference time to-
wards the target private distribution (§4.2). Additionally, we
motivate the use of pretrained (base) models together with
fixed-shot exemplars to improve the quality and diversity of
the synthetic samples (§4.3 and §4.4). Finally, we provide
an analysis of the overall privacy guarantees of our method
(§4.5). Algorithm 1 details the vector extraction steps, and
Algorithm 2 presents the full pipeline of EPSVEC.

4.1 Extracting Private Dataset Vectors

Latent representations of data points. Let f be a frozen
LLM with L layers and hidden dimension d. For an input
text x, we run f and extract token-level hidden states at
each layer ℓ ∈ [L]. We denote the extracted hidden state as
aℓ,t(x) ∈ Rd for layer ℓ and token index t ∈ [T (x)], where
T (x) is the sequence length.
We construct a single example-level representation by mean-
pooling over all tokens in the sequence, defined as

hℓ(x) =
1

T (x)

∑
t∈[T (x)]

aℓ,t(x) ∈ Rd. (1)

Mean-difference dataset vector. Let D+
y = {x+

i }ni=1 be
the private dataset with n samples that has the attribute
y such that (x+

i , y) ∈ Dpriv (e.g., BioRxiv dataset with
the Microbiology topic label). We construct a synthetic
dataset D−

y = {x−
i }ni=1 by prompting the LLM to generate

datapoints with attribute y.
For a pair of positive and negative samples (x+

i , x
−
i ), line 3

of Algorithm 1 computes the mean difference vector d(i)ℓ

between their encoded hidden representations at every layer
ℓ. These difference vectors are then aggregated through
the mean operation at line 6 to construct dataset vectors
{vℓ}. Since both D+ and D− share the same high-level
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Algorithm 1 Extract Private Dataset Vectors

Input: Private set D+
y = {x+

i }ni=1, synthetic set D−
y =

{x−
i }ni=1, hidden state extraction hℓ(·), clip thresholds

{Cℓ}Lℓ=1, and noise scales {σℓ}Lℓ=1.
Output: Private dataset vectors {vℓ}Lℓ=1.

1: for ℓ = 1, 2, . . . , L do
2: for i = 1, 2, . . . , n do
3: d

(i)
ℓ ← hℓ(x

+
i )− hℓ(x

−
i )

4: d
(i)
ℓ ← d

(i)
ℓ ·min

(
1, Cℓ

∥d(i)
ℓ ∥2

)
5: end for
6: vℓ ← 1

n

∑n
i=1 d

(i)
ℓ + ξℓ, where ξℓ ∼ N (0, σ2

ℓ I)
7: vℓ ← vℓ/∥vℓ∥2
8: end for
9: Output {vℓ}Lℓ=1

semantic attribute y, the subtraction operation cancels out
coarse, common features. Consequently, {vℓ} captures the
hidden qualities of the target distribution that correspond to
the gap between standard prompting and real data.

Private dataset vectors. The dataset vector vℓ is a direct
function of the private dataset D+

y , and hence is not private.
We release private dataset vectors by bounding per-example
sensitivity via clipping threshold Cℓ during vector construc-
tion (line 4) and injecting Gaussian noise ξℓ, with the scale
σℓ, into the vector (line 6). The algorithm concludes by
normalizing the final vector individually for each layer. The
rigorous privacy guarantee of dataset vectors is ensured by
the following theorem, proved in Appendix A.

Theorem 4.1 (Privacy Guarantees of Dataset Vectors). For
all ε > 0 and δ ∈ (0, 1), consider the dataset vectors
{vℓ}Lℓ=1 released by Algorithm 1. If for each layer ℓ, the
noise scale satisfies

σℓ ≥
2Cℓ

n
·
√
2 ln(1.25/δ)

ε
(2)

then extracting the dataset vector vℓ is (ε, δ)-DP and Algo-
rithm 1 is (Lε, Lδ)-DP by basic composition.

Private dataset vectors are designed to retain dataset-level
information about D+

y . At the same time, Theorem 4.1
guarantees that these vectors do not reveal sensitive infor-
mation about any single data point in the private dataset.
By the property of differential privacy, any downstream
use of {vℓ}, such as scaling, reweighting, or injection into
language models, preserves the same privacy.

4.2 Steering with Dataset Vector Injection

Let zℓ,t ∈ Rd denote the hidden state at layer ℓ and to-
ken position t during decoding. Given {vℓ}ℓ∈[L], we steer
generation by an additive intervention at each layer as:

zℓ,t ← zℓ,t + βℓ vℓ, (3)
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Figure 3. Comparing human-written IMDb reviews and samples
generated via zero-shot prompting with LLAMA-3.1-8B IT and PT
models. (Left) IT model shows lower lexical diversity measured
as the number of unique opening 3-grams. (Right-Top) LLM-as-a-
judge assigns higher quality scores to IT-generated reviews than to
real reviews, reflecting excessive fluency and grammatical sound-
ness. (Right-Bottom) BERT classifier trained on real reviews and
tested on synthetic data (TRTS) achieves near-perfect accuracy on
IT samples, suggesting these samples are overly simplistic.

where βℓ controls the per-layer steering strength. The next-
token distribution is then computed from the steered hidden
states, and the intervention is applied at every decoding step.
Equation (3) isolates the central idea of our approach: cor-
recting the gap between standard prompting and the target
data distribution without additional privacy leakage.

4.3 Pretrained vs. Instruction-tuned Models

Existing synthetic data generation pipelines make incon-
sistent choices between Pretrained (PT) and Instruction-
tuned (IT) LLMs. In practice, we find that model choice is
not a superficial implementation detail: it strongly affects
the diversity and quality of the generated synthetic corpus,
and thereby also the performance on downstream tasks.
In Figure 3, we compare the number of distinct opening
3-grams in IMDb reviews versus model-generated samples.
IT model generations exhibit substantially fewer unique
openings than the real data. Moreover, the proportion of
unique openings declines rapidly with the number of gener-
ated samples, suggesting that the IT model generates from a
small set of homogenized recurring templates. These results
add to the mounting evidence of diversity collapse in IT
models (Sourati et al., 2025; Shypula et al., 2025).
Further analysis indicates that IT models are more prone to
producing simplistic movie reviews that lack the stylistic
variability typical of human-written text. In Figure 3, we
utilize LLM-as-a-judge to assess the text quality of real and
synthetic movie reviews. While synthetic reviews are con-
sistently rated with higher quality scores than real reviews,
this should not be interpreted as more authenticity: instead,
the inflated scores suggest that synthetic text is more pol-
ished, standardized, and therefore more separable from the
naturally noisy distribution of human reviews. We provide
example generations by PT and IT models in Appendix B.1.
Additionally, using a BERT classifier fine-tuned with real
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data, we find that IT-generated reviews are classified with
much higher accuracy than real reviews, suggesting that IT
models frequently produce reviews that are trivially positive
or negative with little nuance, while human reviews often
exhibit a mixture of tones and sentiments. Together, these
effects reduce fidelity and make IT-generated synthetic data
a poor proxy for real text.

4.4 Fixed-shot Prompt Templates

In Section 4.3, we observed that PT models are better suited
for generating more diverse synthetic data. At the same
time, they typically require a stronger prompting scaffold
to produce authentic, on-task generations. Moreover, our
ablations in Table 3 show that vector injection is most ef-
fective when steering is based on a stable starting point that
already matches the target format and coarse target attribute.
To these ends, we introduce fixed-shot prompt templates to
better cover stylistic and semantic modes of the real data
distribution. Unlike prior works (Amin et al., 2024; 2025)
that resample data shots, fixed-shot exemplars are extracted
once and used constantly in our entire pipeline, both during
vector extraction and at inference time (e.g, see Figure 1).

How fixed-shots are generated. Using real data as fixed
shots directly leaks privacy. On the other hand, fixed-shot
templates generated through prompting alone can be wildly
unrepresentative of the real data. To address these issues,
we generate per-attribute fixed-shot samples using a small
privacy budget (εfs, δfs).
Concretely, we first construct a candidate pool of synthetic
texts for each attribute y by sampling N completions by
zero-shot prompting the PT model using a generic, attribute-
specific prompt without including any private records. We
then embed both private and candidate texts using QWEN-
3-EMBEDDING-8B and use a DP-histogram mechanism to
extract synthetic instances closest to the private samples.
Let D+

y = {xi}ni=1 denote the private texts for attribute
y, Cy = {cj}Nj=1 denote the synthetic candidate pool, and
ϕ(·) denote the embedding model. We assign each private
example to its nearest candidate in the embedding space,
measured by cosine similarity,

π(i) = arg max
j∈[N ]

sim
(
ϕ(xi), ϕ(cj)

)
,

and form a coverage histogram over candidates,

hj =
∣∣{i ∈ [n] : π(i) = j}

∣∣, j ∈ [N ].

We then privatize these scores with Gaussian noise cali-
brated to (εfs, δfs),

h̃j = hj + ηj , ηj ∼ N (0, σ2
fs),

and select the fixed-shot template as the k candidates with
the largest scores: Sy ← TopK({h̃j}Nj=1). The resulting
exemplar set Sy = {sj}kj=1 is generated once per attribute
and prepended to every prompt as a reusable fixed context.

Algorithm 2 End-to-End EPSVEC Pipeline

Input: Private dataset D+
y for attribute y; LLM f ; privacy

budget (ε, δ); injection layers [L] and coefficients {βℓ};
target synthetic data count M .

Output: Synthetic dataset Dsynth with attribute y.
1: Zero-shot candidate pool. Use zero-shot prompting

with descriptions of attribute y to generate candidate
pool for fixed-shots.

2: Fixed-shot template (§4.4). Generate a fixed-shot
prompt template Sy with budget (εfs, δfs).

3: Negative set D−
y . Generate negative set for dataset

vectors by prompting with Sy .
4: Private dataset vectors (Algorithm 1). Embed neg-

ative set D−
y and private data D+

y to compute private
dataset vectors {vℓ}ℓ∈[L] using the remaining budget
(εvec, δvec).

5: Steered generation (§4.2). Initialize Dsynth ← ∅.
6: while |Dsynth| < M do
7: Generate a synthetic sample x from the steered, fixed-

shot prompted LLM f(·|Sy, {vℓ, βℓ}).
8: Dsynth = Dsynth ∪ {x}.
9: end while

10: Output Dsynth.

Using fixed-shots for dataset vectors Fixed-shot exem-
plars serve two roles in our pipeline. Beyond conditioning
synthetic generation, they also provide a stronger reference
for constructing dataset vectors via D−

y . Concretely, rather
than forming D−

y from zero-shot outputs, we generate D−
y

using the same fixed-shot scaffold. Because fixed-shot gen-
erations more closely match the structure and coarse at-
tributes of the real data, the resulting dataset vectors empha-
size subtler dataset-specific differences instead of correcting
large mismatches induced by zero-shot prompting.

4.5 Privacy Analysis of EPSVEC

A key advantage of EPSVEC is data efficiency, as dataset
vectors achieve a reasonably high performance using only a
small subset of the private dataset. Notably, dataset vectors
are constructed once and can be used infinitely to generate
an arbitrary number of synthetic samples, regardless of the
private dataset size. Hence, when the private data corpus
is large, EPSVEC amplifies privacy guarantees through
subsampling. Adopting the same notations of Algorithm 2,
we prove the following privacy guarantee of EPSVEC.

Theorem 4.2 (Privacy guarantee with subsampling). Algo-
rithm 2 satisfies (ε, δ)-differential privacy for

ε = εfs + log (1 + q (eεvec − 1)) , δ = δfs + qδvec, (4)

where q is the proportion of the private dataset used for
dataset vector construction, (εfs, δfs) is the privacy budget
for fixed-shot extraction, and (εvec, δvec) is the privacy guar-
antee for dataset vectors established in Theorem 4.1.
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5 Experiments
5.1 Experimental Setup

Datasets. We evaluate EPSVEC and baselines with four
datasets, listed in Table 1. The Yelp Polarity (Zhang et al.,
2015) and the IMDb reviews (Maas et al., 2011) contain
real user reviews classified into positive and negative sen-
timents. The BioRxiv abstracts dataset (Hou et al., 2025)
contains detailed category labels of recent biology paper
abstracts. We include 4 dominant categories (Neuroscience,
Bioinformatics, Microbiology, and Cell Biology) and filter
the dataset to only include papers after LLAMA-3.1-8B’s
cutoff date at the end of Dec. 2023 (Grattafiori et al., 2024).
Finally, we include OpenReview (ICLR) reviews (Xie et al.,
2024), which we partition into two classes: recommend
accept and recommend reject. As shown in Table 1, the
differing sizes of the datasets test the scalability of methods
in varying data regimes.

Hyperparameters. In all our experiments, we target gener-
ating 2K samples for each dataset, distributed uniformly
across the number of classes. Experiments in Table 2
are repeated for three seeds. We use LLAMA-3.1-8B
for all the pretrained model experiments and LLAMA-3.1-
8B-INSTRUCT for instruction-tuned model experiments
(Grattafiori et al., 2024). We use 2 fixed shots for prompting,
generated with privacy budget εfs = 0.1. Dataset vectors
are constructed using 500 training samples from each class,
extracted from 4 layers of the model (18 to 21). We set
the clipping parameter to 5.5 and the injection coefficient
βℓ = 1.4 for these layers. We fix temperature to 1.6 for con-
sistency, although temperature search for each dataset are
possible. All other parameters at inference are set to their
default values. Since our privacy guarantees are independent
of the number of samples, we employ rejection sampling
by generating more samples and dropping low-quality ones
using a smaller LLM-as-a-judge, in particular QWEN-3-4B-
INSTRUCT (Team, 2025). Appendix D provides ablations
of our hyperparameters, including temperature, rejection
sampling, and injection layers and coefficients.
In our implementation, we use Opacus (Yousefpour et al.,
2022) to compute exact noise for vector construction and
fixed-shot filtering to achieve tight privacy guarantees.

Metrics. We adopt the MAUVE score (Pillutla et al., 2021;
Amin et al., 2025; Vinod et al., 2025) to evaluate the distri-
butional gap between synthetic text and real data. Note that
the absolute scale of MAUVE is highly dependent on hy-
perparameter choices, but the relative ranking is preserved
(Pillutla et al., 2023). We provide a detailed analysis of
the influence of MAUVE hyperparameters in Appendix C.2.
For a fair comparison, we use the stricter setup with the scal-
ing factor 5 and a fixed number of 200 bins for clustering
suggested by Pillutla et al. (2021).

Dataset Text Domain and Task Size # of Classes

IMDb Movie Review Sentiment 25K 2
Yelp Commercial Review Sentiment 560K 2

BioRxiv Academic Domain Classification 25K 4
OpenReview Paper Decision Classification 11K 2

Table 1. Overview of datasets used.

We measure the downstream performance of our genera-
tions in Table 2 by using synthetic text to fine-tune a BERT
classifier (Devlin et al., 2019) and test its accuracy on real
data. Appendix D.1 presents additional downstream met-
rics, including in-context learning, text quality, and BERT
trained on real data and tested on synthetic data.

Baselines. We compare EPSVEC with several recent
inference-based private synthetic text generation methods.
AUG-PE (Xie et al., 2024) relies on instruction prompting
to generate samples with variations, and selects the top sam-
ples with DP histograms for privacy. PRIVATE PREDICTION
(PP, Amin et al., 2024) aggregates logits across large batch
sizes during LLM decoding to satisfy privacy guarantees.
PP++ (Amin et al., 2025) enhances PP using pretrained
models and prompting the model with homogenized sam-
ples by clustering samples with public centers. Along the
same line of work, INVISIBLEINK (Vinod et al., 2025) uti-
lizes top-k sampling to enable efficient generation for pri-
vate prediction methods. In Table 2, only methods with
++ support pretrained models, while others use instruction-
tuned models. We also show the performance of real data
on our metrics. Finally, we include a 2-shot prompting base-
line that uses real data shots. A detailed documentation of
baseline hyperparameters is included in Appendix C.1.

5.2 Results

Our main results are reported in Table 2. Overall, EPSVEC
consistently attains strong distributional fidelity under pri-
vacy across all four corpora, with the largest gains appearing
on domains with smaller data size (IMDb, BioRxiv, OpenRe-
view). In particular, EPSVEC++ achieves the best MAUVE
on IMDb at both privacy levels, reaching 72.3 at ε = 5
and 67.8 at ε = 3, a substantial improvement over prior
inference-time baselines. On Yelp and IMDb our privatized
generations can even match or exceed the MAUVE of a non-
private 2-shot prompt baseline, indicating that the released
dataset vectors capture dataset-level structure beyond what
can be conveyed by a small number of in-context examples.
In contrast, training-free inference-time aggregation meth-
ods face a practical scalability bottleneck: PP and PP++
require aggregating token distributions over large batches of
samples, which makes long-form generation and large-scale
sampling expensive. In our setting, this prevents PP/PP++
from producing the full 2K samples on IMDb, BioRxiv,
and OpenReview, and PP++ fails to produce usable out-
puts at ε = 3. Finally, comparing baselines that differ only
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ε Method IMDb Reviews Yelp Reviews BioRxiv Abstracts ICLR Reviews on OpenReview

MAUVE (%) ↑ BERT (%) ↑ MAUVE (%) ↑ BERT (%) ↑ MAUVE (%) ↑ BERT (%) ↑ MAUVE (%) ↑ BERT (%) ↑

∞ 2-Shot 61.3±0.4 87.4±0.1 66.9±2.6 91.5±0.1 76.9±3.4 87.4±0.7 56.8±0.7 69.9±0.8

Real Data 89.3±1.7 90.7±0.1 95.9±1.2 93.6±0.4 96.6±0.6 91.8±0.4 95.8±0.6 73.2±0.1

5

AUGPE 0.5±0.0 73.1±1.6 0.4±0.0 81.6±3.4 0.5±0.0 23.8±1.0 0.4±0.0 50.9±0.6

INVINK 0.4±0.0 78.7±2.0 0.5±0.0 88.5±0.5 0.9±0.0 86.3±0.7 0.5±0.0 61.7±1.1

PP 3.1±0.4 57.4±1.3 8.9±0.5 91.0±0.3 1.7±0.1 26.9±0.5 2.3±0.6 50.0±0.2

PP++ 14.9±2.2 54.2±0.3 69.8±3.0 91.3±0.4 1.9±0.1 26.7±0.7 5.5±1.3 49.9±0.1

EPSVEC 8.4±1.6 86.9±0.6 12.8±2.2 75.8±3.6 35.8±0.9 86.4±0.6 11.9±0.3 67.6±0.4

EPSVEC++ 72.3±2.7 84.3±0.5 62.9±4.0 83.8±1.2 62.2±0.2 86.0±1.9 33.0±1.0 66.4±0.8

3

AUGPE 0.5±0.0 74.3±3.4 0.4±0.0 82.5±1.4 0.5±0.0 22.7±0.7 0.4±0.0 50.6±0.9

INVINK 0.4±0.0 77.7±2.4 0.5±0.0 87.1±0.3 0.9±0.0 85.6±0.9 0.4±0.0 62.8±0.7

PP 3.1±0.4 57.4±1.3 9.1±0.7 90.8±0.2 1.7±0.1 26.9±0.5 2.3±0.6 50.0±0.2

PP++† - - - - - - - -
EPSVEC 7.8±0.9 86.8±0.4 12.2±1.1 76.9±2.6 37.2±1.2 85.3±0.2 11.1±0.1 68.2±1.4

EPSVEC++ 67.8±1.6 84.7±1.6 67.3±3.6 85.8±1.4 60.7±1.1 85.8±1.7 33.0±1.8 67.3±0.5

Table 2. We compare EPSVEC with AUG-PE (Xie et al., 2024), INVISIBLEINK (INVINK, Vinod et al., 2025), PRIVATE PREDICTION
(PP, Amin et al., 2024) and PRIVATE PREDICTION++ (PP++, Amin et al., 2025). Methods with ++ uses pretrained models. † indicates
that the baseline failed to generate any samples within the privacy budget.

in pretrained vs. instruction-tuned models (PP vs. PP++;
EPSVEC vs. EPSVEC++) suggests that pretrained mod-
els yield substantially higher fidelity than instruction-tuned
variants, consistent with the diversity of pretrained models.

Runtime and sample efficiency. A key advantage of
EPSVEC is its data and compute efficiency. As shown in
Figure 4, distributional fidelity (MAUVE) improves rapidly
even with a small number of private examples used to con-
struct dataset vectors, indicating strong sample efficiency.
Moreover, in the low-data setting, the resulting synthetic
text remains similar in text quality to real samples. Together,
these results suggest that EPSVEC is well-suited for scarce-
data scenarios, with limited private data. When additional
private data is available, it can be leveraged either to con-
struct higher-quality dataset vectors or to further amplify
privacy through subsampling, as discussed in §4.5.
In Figure 5 (Left), we report the amortized runtime of base-
lines on a single A100 (80GB) as well as the number of
private samples required to generate 2K synthetic texts.
Across methods, we either follow the baselines’ default
settings or tune hyperparameters to balance efficiency and
quality. Under this setup, EPSVEC attains strong fidelity
and downstream utility while requiring the least compute
and the fewest private samples among the compared base-
lines. Unlike PP, PP++, and INVISIBLEINK, EPSVEC does
not require large batch sizes and can generate an arbitrary
amount of synthetic texts. While AUG-PE requires many
repeated LLM calls to generate diverse rephrases, EPSVEC
generates outputs at the same efficiency as standard infer-
ence. Moreover, EPSVEC is not only robust to the size
of generation, but also to the sequence length. As shown
in Figure 5 (Right), other methods fail to generate long se-
quences under low privacy budgets, whereas our method is
suitable for scenarios requiring longer samples or stronger
privacy guarantees.
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Figure 4. Varying number of private samples consumed for vector
construction in Yelp and ε = 5. (Left) MAUVE increase is
observed even when using a small number of private data. (Right)
Synthetic text quality remains similar to private text quality for
varying amount of private data used.
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Figure 5. Runtime and sample efficiency for all methods on one
A100 GPU with 80GB VRAM. (Left) Amortized runtime and
number of required real data for generating 2K synthetic samples
on Yelp dataset, privacy budget ε = 5. (Right) Maximum length
of synthetic sample allowed given privacy budget.

5.3 Understanding EPSVEC

Ablating components. To attribute performance gains to
individual design choices, we hold hyperparameters con-
stant and ablate core components of EPSVEC, examin-
ing dataset-vector steering and fixed-shot prompting both
with and without DP-histogram filtering. Table 3 demon-
strates the effectiveness of dataset vector injection, fixed-
shot prompt templates, and PT models.
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ε Baseline Model MAUVE BERT

∞ 2-Shots PT 61.3±0.4 87.4±0.1

0 Zero-Shot PT 19.2±0.9 83.2±0.2

3.0
EPSVEC++
w/o Fixed-Shots PT 48.2±3.1 87.0±0.3

0.1 2-Fixed-Shots IT 0.8±0.0 84.4±0.8

3 EPSVEC IT 7.8±0.9 86.8±0.4

0.0
2-Fixed-Shots
w/o DP-histogram PT 11.4±2.4 73.9±9.6

3
EPSVEC++
w/o DP-histogram PT 42.9±4.5 72.3±7.8

0.1 2-Fixed-Shots PT 28.6±1.4 86.3±0.7

3 EPSVEC++ PT 67.8±1.6 84.7±1.6

Table 3. Component ablations on IMDb. We isolate the effects
of dataset-vector steering and fixed-shot prompting (with/without
DP-histogram), and compare pretrained (PT) and instruction-tuned
(IT) models. Methods without “EPSVEC” do not include steering.
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Figure 6. EPSVEC++ privacy-utility trade-off curve on IMDb.
(Left) MAUVE generally decreases with less privacy budget. How-
ever, there is an increasing trend when ε decreases from large
ranges. (Right) Text quality remains stable even under higher
privacy guarantees.

The main findings are:

1. Injecting dataset vectors for all zero-shot and fixed-shot
baselines considerably increases fidelity. This shows that
dataset vectors are crucial components and can enhance
a wide range of generation strategies.

2. Including fixed-shot selection via DP histogram im-
proves fidelity from 48.2 to 67.8, suggesting that a small,
privately selected exemplar scaffold substantially im-
proves the reference distribution.

3. PT models generate synthetic data with much higher
fidelity given the same fixed-shots and privacy budget.
Therefore, using PT models is also a potential considera-
tion necessary for future methods.

Privacy-Utility Tradeoffs. Figure 6 summarizes the
privacy–utility behavior of EPSVEC under varying privacy
budgets, reporting MAUVE and text quality scores. We fix
the privacy budget for fixed-shot selection to εfs = 0.1 and
allocate the remaining budget to privatizing dataset vectors.
As the privacy budget decreases, both MAUVE and text
quality generally degrade due to the larger noise added to
privatize the vectors. Notably, EPSVEC preserves reason-
able text quality even under relatively strong privacy.
We also observe a non-monotonic trend: MAUVE can in-
crease as ε is reduced from large values. One plausible

Model Type Model Name Baseline MAUVE BERT

PT OLMO-3-1025-7B 2-Fixed-Shots 72.7±1.1 89.1±1.1

PT OLMO-3-1025-7B EPSVEC++ 82.7±1.2 89.8±0.4

PT LLAMA-3.1-8B 2-Fixed-Shots 44.1±0.5 86.4±1.4

PT LLAMA-3.1-8B EPSVEC++ 69.4±2.6 84.2±2.3

PT QWEN-3-4B-BASE 2-Fixed-Shots 33.1±0.7 86.4±0.9

PT QWEN-3-4B-BASE EPSVEC++ 51.3±1.1 87.4±0.8

PT GEMMA-3-4B-PT 2-Fixed-Shots 27.0±2.6 77.8±0.7

PT GEMMA-3-4B-PT EPSVEC++ 61.7±2.5 87.2±1.6

Table 4. Our method on other models on Yelp dataset with ε = 5.0.
We fix temperature to 1.4 with details in Appendix C.3.

explanation is that moderate noise introduces stochastic per-
turbation, increasing diversity and improving distributional
fidelity. We leave a more systematic investigation of this
effect to future work.

Compatibility. In Table 4, we demonstrate the performance
of EPSVEC on other models, including OLMO-3-1025-
7B (Olmo et al., 2025), QWEN-3-4B-BASE (Team, 2025),
and GEMMA-3-4B-PT (Team et al., 2025). Results on
Yelp with ε = 5 demonstrate that while the baseline with
fixed-shots only varies in performance, vector injection, on
average, increases MAUVE by 63.2% and BERT accuracy
by 2.85%. Therefore, EPSVEC transfers reliably across
model families and sizes. We report the hyperparameter
details for different models in Appendix C.3.

6 Conclusions
We introduce EPSVEC, a novel private synthetic text gener-
ation method achieving state-of-the-art generation fidelity
while balancing efficiency and privacy. Central to our
method are dataset vectors: compact representations of
subtle distributional properties of datasets. Our experiments
and theory demonstrate that, once privatized, dataset vectors
enable efficient private synthetic data generation. Moreover,
we propose an additional fixed-shots prompt component,
allowing EPSVEC to work effectively on PT models to
achieve higher fidelity.
A natural extension of EPSVEC is to more deeply charac-
terize the relationship between privacy noise and generation
behavior (Figure 6). In particular, can we design noise-
injection schemes that increase diversity while still preserv-
ing privacy and improving fidelity? A second direction is to
better leverage pretrained models: while they offer stronger
diversity in our ablations (Table 3), they are harder to stabi-
lize, suggesting opportunities for improved prompt scaffolds
or representation-space regularization. More broadly, syn-
thetic data generation would benefit from evaluation metrics
that are less sensitive to hyperparameters and better capture
semantic quality, particularly for long-horizon or agentic
datasets where standard distributional scores can be brittle.
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Impact Statement
This work aims to make synthetic text generation more
privacy-preserving and practical. By releasing a small
set of differentially private artifacts (dataset vectors and
a fixed-shot scaffold) and then relying on post-processing
for generation, EPSVEC can enable analysts and practition-
ers to create synthetic corpora that better match a target
distribution while reducing repeated access to sensitive data.
Potential positive impacts include: (i) lowering barriers
to experimentation when raw text cannot be shared (e.g.,
proprietary reviews, peer-review data, or other restricted cor-
pora), (ii) supporting privacy-aware data augmentation and
benchmarking, and (iii) providing a reusable primitive for
privacy-preserving downstream workflows where repeated
private computations are costly.
At the same time, synthetic text can be misused or misun-
derstood. First, if privacy parameters are chosen poorly
or the implementation deviates from the stated accounting,
releases could leak information about individuals in the
private dataset; similarly, releasing fixed-shot exemplars
carries additional responsibility because they may resemble
real records. Second, high-fidelity synthetic corpora may
still encode societal biases present in the source data and can
be used to generate persuasive or harmful content at scale.
Third, synthetic data may be treated as a drop-in replace-
ment for real data without appropriate validation, leading to
misleading conclusions, distribution shift, or overconfidence
in downstream models. To mitigate these risks, we (i) pro-
vide explicit DP guarantees and recommend conservative
privacy settings, careful implementation audits, and sensitiv-
ity analyses; (ii) emphasize that synthetic outputs should not
be used to infer facts about individuals and should be evalu-
ated for bias and harmful content before deployment; and
(iii) encourage using EPSVEC primarily for research and
development settings where governance, access controls,
and documentation (e.g., intended use, privacy parameters,
and known limitations) can be enforced. Overall, we view
EPSVEC as a step toward more responsible use of sensitive
text data, with remaining risks that require careful parame-
terization, evaluation, and deployment practices.
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A Proofs

A.1 Proof of Theorem 4.1

We first mention two lemmas.

Lemma A.1. (Dwork & Roth, 2014) Let f : Xn → Rd be any (possibly randomized) function, and define its ℓ2-sensitivity
under the chosen neighboring relation ∼ by

∆2(f) := sup
S∼S′

∥f(S)− f(S′)∥2.

For parameters ε > 0 and δ ∈ (0, 1), consider the Gaussian mechanism

M(S) := f(S) + Z, Z ∼ N (0, σ2Id).

If

σ ≥
∆2(f)

√
2 ln(1.25/δ)

ε
,

thenM is (ε, δ)-differentially private.

Lemma A.2. (Dwork & Roth, 2014) LetM1,M2 be two (ε, δ)-DP algorithms, then the composition (M1,M2) satisfies
(2ε, 2δ)-DP.

We first show that extracting vℓ with noise σℓ is (ε, δ)-DP.

Fix a layer ℓ and let d(1)ℓ , . . . , d
(n)
ℓ ∈ Rd denote the (possibly data-dependent) vectors after ℓ2-clipping, so that

∥d(i)ℓ ∥2 ≤ Cℓ for all i ∈ [n].

Define the empirical mean

f(Dℓ) :=
1

n

n∑
i=1

d
(i)
ℓ ,

Consider the substitution neighboring relation: Dℓ ∼ D′
ℓ if they have the same size n and differ in exactly one entry. Let Dℓ

and D′
ℓ differ only at index j. Hence by the triangle inequality,

∥f(Dℓ)− f(D′
ℓ)∥2 ≤

1

n

(
∥d(j)ℓ ∥2 + ∥d

′(j)
ℓ ∥2

)
≤ 2Cℓ

n
.

Therefore the ℓ2-sensitivity of f satisfies

∆2(f) = sup
Dℓ∼D′

ℓ

∥f(Dℓ)− f(D′
ℓ)∥2 ≤

2Cℓ

n
.

Applying Lemma A.1, extracting vℓ with noise scale σℓ satisfies (ε, δ)-differential privacy. By Lemma A.2, extracting L
vectors {vℓ} is (Lε, Lδ)-DP.

A.2 Proof of Theorem 4.2

Lemma A.3. (Balle et al., 2018) Let A be an (ε, δ)-DP algorithm with respect to the substitution neighboring relation,
when run on datasets of size m, where 1 ≤ m ≤ n.

Define the subsampled mechanismM on input D ∈ Xn as follows: sample a subset S ⊆ [n] uniformly at random among
all subsets of size m (sampling without replacement), form the subsample DS := {xi : i ∈ S}, and output

M(D) := A(DS).

Let q := m/n. ThenM is (ε′, δ′)-DP, where

ε′ = log
(
1 + q (eε − 1)

)
, δ′ = q δ.

Let m be the number of private data points used for dataset vector extraction, and n be the size of the private set, then
Theorem 4.2 is proved by direct application of Lemma A.3 and Lemma A.2.
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B Prompts and Examples

B.1 Example Generations

We provide qualitative generations from EPSVEC and selected baselines from the Yelp sentiment task. All examples use the
same prompting setup as in our evaluation.
Apart from quantitative evidence suggesting IT model’s simplicity and lack of diversity, we also observe this phenomenon
from qualitative examples. While comparing against generations below from EPSVEC on IT vs. PT models, we observe
that PT models and real data often have a mixture of compliments and criticisms in a single review; IT-generated reviews are
generally much more monotone and direct in its tone.
Moreover, our method generates considerably longer texts as compared to methods like PP and PP++, which rely on
per-token privacy budgets.

EPSVEC with Instruction-tuned models

Synthetic Example 1

DO NOT TAKE YOUR CAR TO THIS ALIGNMENT SHOP!\n\nMy car alignment was supposed to be a
quick and easy process at this shop on Main Street, but let me tell you, it was
nothing short of infuriating. \n\nFrom the moment we walked in, I had a bad feeling
about this place. The front desk staff seemed unfriendly and not very professional.
The person who \"greected\" us took our keys and told us it would be about an hour
before someone would even look at our vehicle. That was problem #1.\n\nProblem #2 was
the shop was DIRTY! There were tools and parts scattered all over the floor, and the
air was thick with grease. It smelled like someone had poured an entire can of Wurthle
cleaner all over the place. \n\nWe watched for about 20 minutes while no one even

touched our car. We asked where it was, and they said, \"Oh, we’re on it!\" Uh, sure...
like you would if you were actually trying to do your job. Another guy finally comes
out and does the alignment...WITH A DIRTY RAG AND FLUSHING DIRTY WATER ALL OVER THE
PLACE! Seriously, what kind of shop does this?! He gets in the car and proceeds to
SPILL WATER ON THE SEAT and THE FLOOR. Like, are you serious? Do you guys have any
standards?!\n\nLong story short, the process took an hour longer than expected. When
we picked up our car, the dirty rag and water splatters were still in the vehicle, and
I found a chunk of dust behind the seat that had clearly been stuck there for weeks.\

n\nSave yourself the frustration and DON’T TAKE YOUR CAR TO THIS SHOP. They clearly
don’t care about your business. The front desk dude was more interested in texting on
his phone than attending to customers. And to top it all off, when we asked to report
the cleanliness and service issues, they told us, \"Sorry, not our problem!\" What
kind of response is that?\n\nSTAY AWAY FROM THIS ALIGNMENT SHOP. I’d give them 0 stars
if I could.

Synthetic Example 2

I would give the Hampton Inn 10 stars!! We just ended our college visit in a few
states away, so my 80-year-old grandma flew into this hotel in our town to spend a
week with my family, she has severe arthritis pain and bad knees, the rooms are huge
by the way and beds are super comfy with pillow-top mattresses for her neck pain. The
staff had set us up at a first floor room which is also helpful that the ice box is by
the main front stairs in this wing which was helpful as she gets mad if it has to be

called again and she will yell to call you up...they don’t, so very thoughtful!! One
major concern is to install better locks since when i checked out I could have easily
been a sneaky type sneaked through an emergency door to go back but other than not
sure if that has happened, my Grandma really appreciated everything the staff for your
extra special extra room accommodations!! My grandma loved their continental

breakfast every day that her helper doesn’t have to do anything except wake me or me
for the bus driver for pick the hotel that is best in the entire town so they can be
able to give you back your car key...great, thank you...
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EPSVEC with PT models

Synthetic Example 1

We have ordered multiple items off of the dinner menu. My only complaint about TLT -
and its a big deal - is the price. While they have done a lot with this space, and I
get the newfangled approach of high pricing that many of the up-and-comers utilize...
well that only works when the menu, atmosphere, or drink is fantastic - not so much
when the dinner menu is still a work-in-progress and a $27 steak ($15 at our usual
haunt and twice as flavorful) comes sopping with grease. My advice - get a
reservation so its easier to avoid long waits if its still new and the service won’t
be off...I like you’re new school approach but until the product has caught up, maybe
work on some deals and get butts in doors before you try for prime time diners?
Other than pricing concerns, this is a great spot and an excellent addition to an
already amazing culinary district!

Synthetic Example 2

My husband and I stumbled upon this restaurant the night we had our hotel changed from
San Francisco to South City because there were literally no more rooms left.

Fortunately, the restaurant is a little off the path of tourist sites, so it wasn’t
quite so crowded. I think this restaurant might have a better reputation than we
initially imagined upon arriving because it was a bit of a dive on the outside: dingy
tables covered in brownish-yellow linoleum. However, upon being seated at the front
counter by a friendly woman who also happened to be an awesome musician, we were
surprised to find that the food was outstanding. The chicken curry fries were
delicious and the burrito packed just the right amount of heat. If you find yourself
in The Castro, you’re missing out on the town’s most under-estimated restaurant by
missing this charming establishment. You never know what sort of musician, politician,
athlete, etc. will walk in the front door. I can’t recall ever meeting the head man (

owner/chef), who seemed too busy manning the counter with his wife to chat with us,
but he was still pretty friendly. The wife-musician was delightful and chatty, and
made us want to go in at 2:30 p.m. another evening just to hear her play some music on
her guitar in front of the restaurant. Even more fun was when she pulled a small

accordion out from under the counter; her playing on this instrument was positively
amazing. She took me with her when she stepped over to the window to play, where I
danced as best I could within my relatively confined 5-foot radius.

PP (Amin et al., 2024) with Instruction-tuned models

Synthetic Example 1

I visited Hakkasan last night and was underwhelmed by the whole experience. The club
was packed, but the drinks were overpriced and the staff seemed disorganized. We
waited in line for over 30 minutes to get in, and the VIP area was smaller than I
expected. When we finally got inside, the music was loud, but the sound quality was
subpar. Overall, I wouldn’t recommend Hakkasan to anyone unless they’re looking for an
overhyped, overcrow

Synthetic Example 2

I was extremely disappointed with the hotel’s response to my complaint. I sent them
an email about the poor cleanliness of my room and I received an automated response
saying they would look into it, but nothing ever came from it. I then called the front
desk and the person on the phone claimed they sent a supervisor to inspect the room,

but that was a lie. When I asked to speak to a manager, they told me that the manager
was unavailable and that they would email me back
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PP++ (Amin et al., 2025) with PT models

Synthetic Example 1

If you’re looking for a nice, hipster spot where you can grab a cup of coffee and buy
interesting things through its cool little shop area, then this is your place. However,
If you’re looking for a place that you can pop into and just grab a single cup of

coffee (not to buy a pre-packaged take home cup of coffee, but a cup of coffee that
you can drink on the go) or to quickly pop in and grab a cup of coffee and then

Synthetic Example 2

The food was okay....nothing special. The portions were small for noon price
particularly for the turkey burger and the fries were bland. The brown turkey burger
came without vegetables, it was asked to be served with veggies and it also came
without the baguette. The fries were the right size but were drenched in oil....I
could not eat them. The server was very helpful. She replenished very quickly and was
very nice. I enjoyed the inside board games and art.. it should’ve

B.2 Dataset Descriptions

Below are dataset and attribute descriptions used throughout the EPSVEC pipeline.

Dataset and Attribute Descriptions

imdb:
movie review with a {class_label} sentiment

yelp:
review with a {class_label} sentiment from one domain (e.g., product, food, and
service reviews)

biorxiv:
abstract section of a journal article on {class_label}. The abstract is a single
coherent paragraph starting with a review of the background and objectives, followed
by methods, results, and conclusions

openreview:
review of an ICLR paper with {class_label} recommendation for acceptance

B.3 Fixed-shot Generation

Before filtering by DP histogram, fixed-shots are generated using the following prompt.

Zero-shot Prompt for Fixed-shot Generation

Below are several diverse examples of {domain_description}.
Each example is human-written and enclosed between <begin> and </end> tags.
Within each example, the content is structured into two fields:
- "Label:" --- describes the category or type of the example
- "Text:" --- contains the corresponding text content

Here are the examples:

<begin>
Label: {class_label}
Text:
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B.4 Dataset Vector Extraction

To compute the embedding of each datapoint, the following prompt where data shot 2 is replaced with private or public
samples, while fixed shot 1 is kept the same for all inputs.

Input Prompt for Extracting Data Embeddings

Below are several diverse examples of {domain_description}.
Each example is human-written and enclosed between <begin> and </end> tags.
Within each example, the content is structured into two fields:
- "Label:" --- describes the category or type of the example
- "Text:" --- contains the corresponding text content

Here are the examples:

<begin>
Label: {class_label}
Text: {fixed_shot_1}
</end>

<begin>
Label: {class_label}
Text: {fixed_shot_2}
</end>

<begin>
Label: {class_label}
Text: {data_shot_1}
</end>

B.5 Synthetic Data Generation

Our synthetic sample generation prompt directly follows from our fixed-shots and vector extraction prompts for consistency
in performance.

Input Prompt for Generating Synthetic Samples

Below are several diverse examples of {domain_description}.
Each example is human-written and enclosed between <begin> and </end> tags.
Within each example, the content is structured into two fields:
- "Label:" --- describes the category or type of the example
- "Text:" --- contains the corresponding text content

Here are the examples:

<begin>
Label: {class_label}
Text: {fixed_shot_1}
</end>

<begin>
Label: {class_label}
Text: {fixed_shot_2}
</end>

<begin>
Label: {class_label}
Text:
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B.6 Text Quality Evaluation

We adopt an LLM-as-a-Judge framework for reporting the synthetic text quality, as well as for rejection sampling.

Text Quality Evaluation Prompts

System Prompt
You are a precise writing-quality evaluator.
Evaluate the provided text and return ONLY a valid JSON object that follows this
schema:
{

"fluency": <integer 1-5>,
"grammar": <integer 1-5>,
"coherence": <integer 1-5>,
"overall": <integer 1-10>

}
Rules:
1) Output pure JSON (no markdown, no extra text).
2) Use integers only for scores.

Evaluation Instructions
Evaluate the following synthetic text using G-Eval-style criteria:
- Fluency (1-5): smoothness and flow; natural phrasing, no awkwardness.
- Grammar (1-5): correctness of syntax, tense, agreement, punctuation.
- Coherence (1-5): logical organization; ideas connect and progress sensibly.
- Overall (1-10): holistic quality as writing (not factual accuracy).

B.7 In-Context Learning Evaluation

We use In-Context Learning to evaluate the downstream performance of our method.

In-Context Learning Evaluation Prompt

Consider the following examples with their labels:

Text: {sample}
Label: positive

Text: {sample}
Label: negative

Now classify the following. Just output the label with no explanation or punctuation.

Text: {testsample}
Label:

C Further Experimental Details

C.1 Baselines Details

Both AUGPE1 and INVISIBLEINK2 provide end-to-end implementations of their data generation pipelines. For a fair
comparison, we adapt their data-loading components to match our datasets and append our evaluation module to run all
methods under an identical evaluation protocol. We implement PP and PP++ based on their algorithm description.
Below are the hyperparameter setups for each of our baselines:

1https://github.com/AI-secure/aug-pe
2https://github.com/cerai-iitm/invisibleink
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PP and PP++ Private Prediction methods strongly rely on the batch size for generations with privacy guarantees. Since
every input gets padded to the max length of all inputs in a batch, we truncate all samples to 300 tokens to fit batch size 200
on an A100 GPU with 80GB RAM to obtain sufficiently long samples. We apply the same clustering with public centers as
Amin et al. (2025) and use 10 centers. Since both methods turn off top-p and top-k sampling, we found that temperature 1.0
with clipping 10 on LLAMA-3.1-8B generated the most stable outputs; above this temperature, LLAMA-3.1-8B produces
gibberish tokens. Below this temperature, either the batch size has to grow very large, or the privacy budget and the number
of tokens that can be generated significantly drop.

INVISIBLEINK We follow the suggested hyperparameter choices, including setting batch size 8, temperature 1.0, and top-k
100. Moreover, since INVISIBLEINK relies on smaller batch sizes and hence less data to generate all the samples, we apply
the same privacy amplification by subsampling as Theorem 4.2 to maintain fair comparison.

AUGPE Since AUGPE reported experiments are run on smaller models and/or commercial APIs, we run AUGPE with 5
variations each epoch and a total of 5 epochs, following recent works’ setups (Vinod et al., 2025). We observed that AUGPE
achieves the best performance with temperature set to 1.2. All other parameters are set to default, as reported in the AUGPE
codebase.

C.2 MAUVE Analysis
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Figure 7. Sensitivity of MAUVE to hyperparameters. MAUVE scores for EPSVEC 2K generated outputs as a function of scaling factor
(left) and number of buckets (right).

In Figure 7, we demonstrate the high-dependency of MAUVE on scaling factor and number of clustering buckets. We
adopt the same setup as our Table 2 experiments, comparing 2K EPSVEC generated data and 2K randomly sampled test
data. In the left figure, we fix the number of buckets as 200 and vary the scaling factor. MAUVE drops significantly as the
scaling factor increases. Previous works (Vinod et al., 2025) use a scaling factor of 0.9, in which our method will achieve
a near-perfect MAUVE score. In the right plot, we fix the scaling factor to 0.9 and vary the number of buckets used for
clustering. The suggested number of buckets is N/10, where N is the number of synthetic data points (Pillutla et al., 2021),
which corresponds to 200 in our scenario.

C.3 Other LLMs Hyperparameters

Below we report the hyperparameters used for Table 4. All experiments are run at a temperature of 1.4 to maintain reasonable
performance across all models. Table 5 lists the injection layers and coefficients we use for each model. We note that the
difference in scale observed in the injection coefficient is due to the normalization used by each model, and does not affect
any of our privacy guarantees.

Model Injection layers Coefficient

LLAMA-3.1-8B (Grattafiori et al., 2024) 18–21 1.4
OLMO-3-1025-7B (Olmo et al., 2025) 15–16 1
QWEN-3-4B-BASE (Team, 2025) 19–20 10
GEMMA-3-4B-PT (Team et al., 2025) 17–18 800

Table 5. Vector-injection hyperparameters for each model: the transformer layers where we inject the dataset vector and the corresponding
injection coefficient.
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D Additional Experiments

D.1 Full Version of Table 2

Table 6 reports an extended version of our main results table. In addition to MAUVE and BERT TSTR, we include BERT
TRTS, ICL TRTS/TSTR, and text quality scores. The prompts used for the ICL evaluations are provided in Appendix B.7.
For ICL TRTS, we use real examples as in-context shots and classify synthetic samples; for ICL TSTR, we reverse this
setup and use synthetic shots to classify real samples.
Importantly, higher scores on BERT TRTS, ICL tasks, or text quality metrics should not be interpreted as strictly higher
fidelity to the real-data distribution. Even the real-data baseline does not necessarily achieve high values on these metrics, as
many datasets are not cleanly separable along a single axis. For example, a Yelp review may exhibit mixed sentiment, and a
BioRxiv abstract may span multiple subdomains. In contrast, several baselines attain TRTS scores substantially higher than
real data, which suggests that their generations may be overly label-obvious (i.e., trivially separable) rather than reflecting
the nuanced structure of the underlying corpus.

D.2 Temperature

In Figure 8, we examine the effect of temperature on all reported metrics. We run LLAMA-3.1-8B on IMDb at ε = 5. At
low temperatures, generations are conservative and repetitive, yielding limited lexical and stylistic diversity relative to the
real corpus. Increasing the temperature initially improves coverage and distributional fidelity, leading to closer performance
on metrics with real data. However, at sufficiently high temperatures, sampling noise dominates and the model produces
off-distribution content, causing fidelity to degrade.
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Figure 8. Effects of temperature on PT models on IMDb with ε = 5.

D.3 Layer and Injection Coefficient

Figure 9 studies the sensitivity of EPSVEC to the injection coefficient β and the choice of injection layers. We sweep β
over a range of values and inject the dataset vector into four contiguous layer blocks, while keeping all other settings fixed
(backbone: pretrained LLAMA-3.1-8B, dataset: Yelp, ε = 5, and the same decoding/evaluation protocol).
Overall, performance is most stable for moderate injection strength and for injections applied in later layers. Increasing β
initially improves fidelity (MAUVE) and text quality, indicating that stronger steering can better move generations toward the
target distribution. However, overly large β degrades multiple metrics, consistent with over-steering that pushes generations
off-distribution or reduces semantic consistency. Across layer choices, later-layer injection tends to be more robust, whereas
earlier-layer injection is more sensitive to β and can lead to sharper degradation at high coefficients. Based on this sweep,
we select a middle-range β and a late-layer injection block in the main experiments.

D.4 Rejection Sampling

Table 7 reports the impact of applying rejection sampling using an LLM-as-a-judge text-quality score (threshold 6) as a
post-processing step. We compare EPSVEC++ with and without rejection sampling on the same setting (PT model, ε = 5)
as the main table.
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Figure 9. Effects of injection layers and coefficient on performance on PT models on Yelp with ε = 5.

Rejection sampling increases the average text-quality score for EPSVEC++ from 5.9 to 6.2 while also improving MAUVE
(69.4→ 72.3) and BERT accuracy (83.9→ 84.3). This suggests that, in our setting, enforcing a minimum quality constraint
can improve surface-level fluency without sacrificing—and in fact improving—distributional fidelity. Nevertheless, given
that gains are moderate, we treat rejection sampling as an optional post-processing step rather than a core component.
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ε Method Yelp Reviews

MAUVE (%) ↑ BERT TRTS (%) BERT TSTR (%) ↑ ICL TRTS(%) ICL TSTR(%) Quality (1-10)

∞ 2-Shot 66.9±2.6 89.7±0.8 91.5±0.1 91.2±0.4 95.3±0.2 5.9±0.0

Real Data 95.9±1.2 93.7±0.4 93.6±0.4 96.0±0.4 96.0±0.2 6.4±0.0

5

AUGPE 0.4±0.0 97.9±1.0 81.6±3.4 98.6±0.8 95.6±0.1 7.8±0.1

INVISIBLEINK 0.5±0.0 99.7±0.1 88.5±0.5 99.7±0.1 95.3±0.2 9.4±0.0

PP 8.9±0.5 98.2±0.2 91.0±0.3 98.8±0.3 95.8±0.2 8.0±0.0

PP++ 69.8±3.0 83.4±0.2 91.3±0.4 84.9±0.6 96.1±0.1 4.9±0.0

EPSVEC 12.8±2.2 91.7±1.1 75.8±3.6 96.3±0.7 95.1±0.3 6.7±0.1

EPSVEC++ 62.9±4.0 92.9±0.1 83.8±1.2 93.7±0.2 95.7±0.4 6.7±0.1

3

AUGPE 0.4±0.0 97.8±0.8 82.5±1.4 98.4±0.9 95.8±0.2 7.8±0.1

INVISIBLEINK 0.5±0.0 99.6±0.0 87.1±0.3 99.5±0.1 95.5±0.2 9.4±0.0

PP 9.1±0.7 98.3±0.1 90.8±0.2 98.7±0.2 95.7±0.2 8.0±0.0

PP++† - - - - - -
EPSVEC 12.2±1.1 93.0±0.6 76.9±2.6 96.9±0.8 95.3±0.3 6.7±0.1

EPSVEC++ 67.3±3.6 92.6±1.2 85.8±1.4 94.1±0.8 95.4±0.3 6.6±0.1

ε Method IMDb Reviews

MAUVE (%) ↑ BERT TRTS (%) BERT TSTR (%) ↑ ICL TRTS(%) ICL TSTR(%) Quality (1-10)

∞ 2-Shot 61.3±0.4 81.2±0.7 87.4±0.1 84.3±0.4 93.3±0.6 5.6±0.0

Real Data 89.3±1.7 90.7±0.1 90.7±0.1 93.6±0.4 93.2±0.7 6.7±0.0

5

AUGPE 0.5±0.0 97.4±0.4 73.1±1.6 98.0±0.8 94.3±0.4 8.1±0.1

INVISIBLEINK 0.4±0.0 99.5±0.2 78.7±2.0 99.6±0.2 93.5±0.7 9.3±0.0

PP 3.1±0.4 93.9±1.4 57.4±1.3 92.7±0.7 93.5±0.4 7.3±0.1

PP++ 14.9±2.2 75.8±3.5 54.2±0.3 73.6±3.6 93.9±0.6 4.5±0.2

EPSVEC 8.4±1.6 96.2±0.4 86.9±0.6 96.9±0.8 93.7±0.7 5.2±0.1

EPSVEC++ 72.3±2.7 86.9±0.4 84.3±0.5 89.0±0.2 93.3±0.6 6.2±0.0

3

AUGPE 0.5±0.0 97.4±0.3 74.3±3.4 98.1±0.8 94.5±0.3 8.1±0.1

INVISIBLEINK 0.4±0.0 99.4±0.3 77.7±2.4 99.6±0.1 93.5±0.7 9.3±0.0

PP 3.1±0.4 94.0±0.9 57.4±1.3 92.7±0.7 93.5±0.4 7.3±0.1

PP++† - - - - - -
EPSVEC 7.8±0.9 96.6±0.2 86.8±0.4 97.2±0.4 93.7±0.8 5.2±0.1

EPSVEC++ 67.8±1.6 87.2±1.2 84.7±1.6 89.2±0.2 93.7±0.8 6.2±0.0

ε Method BioRxiv Abstracts

MAUVE (%) ↑ BERT TRTS (%) BERT TSTR (%) ↑ ICL TRTS(%) ICL TSTR(%) Quality (1-10)

∞ 2-Shot 76.9±3.4 83.1±0.4 87.4±0.7 68.8±0.3 77.1±0.8 6.9±0.0

Real Data 96.6±0.6 91.8±0.6 91.8±0.4 77.7±0.3 77.8±0.5 8.8±0.0

5

AUGPE 0.5±0.0 25.3±0.4 23.8±1.0 21.5±0.5 76.8±0.7 6.7±0.0

INVISIBLEINK 0.9±0.0 94.6±0.7 86.3±0.7 89.2±0.8 74.2±0.2 9.4±0.0

PP 1.7±0.1 96.8±0.8 26.9±0.5 89.6±4.5 73.0±0.5 7.0±0.1

PP++ 1.9±0.1 75.2±5.0 26.7±0.7 59.2±7.7 76.6±0.3 5.5±0.1

EPSVEC 35.8±0.9 96.0±0.2 86.4±0.6 90.9±0.2 76.5±0.4 5.9±0.0

EPSVEC++ 62.2±0.2 90.6±0.4 86.0±1.9 80.2±0.6 76.8±0.4 7.6±0.0

3

AUGPE 0.5±0.0 25.5±0.4 22.7±0.7 21.4±0.5 76.8±0.3 6.7±0.0

INVISIBLEINK 0.9±0.0 94.4±0.5 85.6±0.9 89.3±0.4 74.0±0.5 9.4±0.0

PP 1.7±0.1 97.4±0.8 26.9±0.5 89.6±4.5 73.0±0.5 7.0±0.1

PP++† - - - - - -
EPSVEC 37.2±1.2 95.3±0.3 85.3±0.2 90.4±0.6 76.4±0.5 6.0±0.0

EPSVEC++ 60.7±1.1 89.8±0.5 85.8±1.7 78.8±0.5 77.8±0.5 7.6±0.0

ε Method ICLR Reviews on OpenReview

MAUVE (%) ↑ BERT TRTS (%) BERT TSTR (%) ↑ ICL TRTS(%) ICL TSTR(%) Quality (1-10)

∞ 2-Shot 56.8±0.7 68.3±1.1 69.9±0.8 69.1±0.6 71.6±0.5 6.1±0.0

Real Data 95.8±0.6 73.1±0.1 73.2±0.1 71.7±0.5 72.0±0.2 7.1±0.0

5

AUGPE 0.4±0.0 50.7±0.1 50.9±0.6 50.3±0.3 74.2±0.4 7.8±0.0

INVISIBLEINK 0.5±0.0 97.9±0.2 61.7±1.1 98.7±0.1 72.0±0.3 9.1±0.0

PP 2.3±0.6 76.9±4.3 50.0±0.2 80.7±3.4 73.5±0.6 6.7±0.1

PP++ 5.5±1.3 65.0±5.0 49.9±0.1 62.5±2.9 74.2±0.4 4.8±0.1

EPSVEC 11.9±0.3 92.3±0.8 67.6±0.4 94.1±0.3 73.1±0.2 5.2±0.1

EPSVEC++ 33.0±1.0 78.7±0.4 66.4±0.8 83.9±0.7 73.4±0.6 5.9±0.1

3

AUGPE 0.4±0.0 50.7±0.2 50.6±0.9 50.3±0.2 73.9±0.3 7.8±0.0

INVISIBLEINK 0.4±0.0 98.3±0.1 62.8±0.7 99.3±0.2 71.5±0.5 9.2±0.0

PP 2.3±0.6 76.2±4.4 50.0±0.2 80.7±3.4 73.5±0.6 6.7±0.1

PP++† - - - - - -
EPSVEC 11.1±0.1 92.7±0.6 68.2±1.4 95.4±0.5 73.2±0.6 5.3±0.0

EPSVEC++ 33.0±1.8 80.4±0.1 67.3±0.5 84.4±0.2 73.5±0.0 5.9±0.0

Table 6. Complete results of Table 2, with the addition of text quality score, BERT TRTS, and in-context learning. Note that higher BERT
TRTS, ICL, and text quality score do not necessarily imply that synthetic data is closer to real data.
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ε Baseline Model MAUVE BERT Text Quality

∞ Real Data - 89.3±1.7 90.7±0.1 6.7±0.0

∞ 2-Shots PT 61.3±0.4 87.4±0.1 5.6±0.0

5.0 EPSVEC++ w/o Rejection Sampling PT 69.4±4.0 83.9±1.3 5.9±0.0

5.0 EPSVEC++ PT 72.3±2.7 84.3±0.5 6.2±0.0

Table 7. Effect of rejection sampling with text quality threshold 6. We generate more synthetic samples and then filter samples by using
LLM-as-a-judge.

E Limitations
Dataset vectors rely on the separability between public and private data. While we observe this separability across multiple
text domains and widely-used datasets, it is not a universal guarantee for all datasets. Therefore, it remains unclear whether
our method can be applied to more complex datasets like high-dimensional biological data.
Moreover, dataset vectors are most effective when the model can already provide a reasonable fixed-shot candidate pool. In
other words, our method excels in domains where the model has previously seen the data or where public data is available.
For domains where the data is fully novel without any prior data release, the lack of public data can reduce the effectiveness
of our method.
Finally, as is common in private synthetic data generation, we use MAUVE to quantify distributional similarity between
synthetic and real text. While MAUVE is a useful distributional proxy, it does not directly measure semantic faithfulness,
factual consistency, or coherence. This limitation is especially salient for domains with richer semantic structure, where
distributional metrics may not reliably detect. Developing evaluation metrics that are less sensitive to hyperparameters and
more aligned with semantic correctness remains an important direction for future work.

F Final Discussion
This work shows that EPSVEC can make training-free private text generation both practical and high-fidelity by shifting the
unit of privatization from tokens to a compact representation of dataset shift. Rather than privatizing each sample, EPSVEC
privatizes a single dataset-level direction that captures how generations should move toward the target corpus. Concretely,
EPSVEC extracts dataset vectors from private embeddings, releases a single sanitized vector satisfying differential privacy,
and then reuses it for all downstream decoding and post-processing at no additional privacy cost. To our knowledge,
this is the first DP synthetic data pipeline that operationalizes steering vectors as a reusable, privatized control signal for
dataset-level distributional alignment. This immediately yields an appealing operating point: arbitrary numbers of samples,
arbitrary sequence lengths, and inference efficiency comparable to standard generation rather than per-token DP aggregation.
Empirically, EPSVEC delivers strong distributional fidelity across four corpora, with especially large gains in lower-data
domains (IMDb, BioRxiv, OpenReview). In aggregate, the method achieves large fidelity improvements while maintaining
competitive downstream utility when synthetic data are used for BERT fine-tuning. These results suggest that a single
privatized direction can encode rich, high-dimensional dataset attributes (style, subtopic mixtures, semantic flow) that are
difficult to match via prompting alone, especially under tight privacy budgets.
Moreover, EPSVEC meaningfully improves deployability and scalability. Inference-time aggregation baselines face a
scalability bottleneck because they must aggregate token distributions over large private batches or requires more samples
and compute for effective generations, making long-form generation and large-scale sampling expensive; in experiments,
this prevents certain baselines from producing the full 2K samples on several corpora and at stronger privacy. By contrast,
EPSVEC attains strong fidelity while requiring the least compute and relatively few private samples, and it remains viable for
longer sequences under tight budgets. This combination of one-time privatization and unconstrained downstream generation
represents a qualitatively different scalability regime from prior training-free DP approaches.
Finally, the fixed-shot exemplar component highlights an important practical lesson: pretrained (base) models often provide
broader stylistic support than instruction-tuned variants, but they can be harder to stabilize with zero-shot prompting. This
work’s contribution is not merely to use prompting, but to privately select a small, reusable fixed-shot scaffold that anchors
both vector construction and generation. Privately selecting a small set of fixed-shot exemplars (via histograms) makes PT
model generation more controllable and substantially improves fidelity. Looking forward, the observed non-monotonic
privacy–utility behavior (where moderate noise can improve MAUVE) is an intriguing signal that privacy noise may
sometimes act as a useful regularizer, suggesting a promising direction for future work.
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