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Abstract. Background. In medicine and other applications, the copy-
ing and sharing of data is impractical for a range of well-considered rea-
sons. With federated learning (FL) techniques, machine learning models
can be trained on data spread across several locations without such copy-
ing and sharing. While good privacy guarantees can often be made, FL
does not automatically incentivize participation and the resulting model
can suffer if data is non-identically distributed (non-IID) across locations.
Model personalization is a way of addressing these concerns. Methods.
In this study, we introduce Weight Erosion: an SGD-based gradient ag-
gregation scheme for personalized collaborative ML. We evaluate this
scheme on a binary classification task in the Titanic data set. Findings.
We demonstrate that the novel Weight Erosion scheme can outperform
two baseline FL aggregation schemes on a classification task, and is more
resistant to over-fitting and non-IID data sets.

1 Background

In medicine and other applications, data is siloed for a range of well-considered
reasons including confidentiality and governmental regulations. This creates in-
equitable access to probabilistic medicine, where those with less accessible or
smaller silos are under-represented in medical literature. Additionally, “owner-
ship” of potential scientific results creates an environment of competition in
which researchers are reluctant to share their intellectual property (IP). More-
over, delays in granting access can render time-sensitive epidemiological data
substantially less relevant and can lead to outdated and poorly adaptive models.

Federated learning (FL) can transform access to highly sensitive data by
jointly training a machine learning (ML) model through collaboration across
silos without copying the data onto a central server [11]. However, it does not
automatically protect IP, and blindly learning a single global model on possibly
non-identically distributed (non-IID) data risks creating uninformative insights.
One way of addressing these concerns is model personalization, e.g. through
Featurization, Multi-task learning, or Local fine-tuning [7, 9, 10,14].

The Weight Erosion scheme presented here optimizes a personalized model
for one silo, as opposed to conventional personalized FL methods which train
personalized models for all silos simultaneously. While it is conceptually related
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to local fine-tuning, the Weight Erosion scheme is optimized to discard contri-
butions from unhelpful1 silos as early as possible in the training process.

2 Setting and Objective

We consider a network of agents i collecting samples from the underlying dis-
tributions Di. One agent (agent 0) is called the user and wishes to perform an
inference task on D0. The task of personalized collaborative ML, in a broad sense,
is to give agent 0 a training algorithm which discriminates between the available
agents in some way to minimize the true loss of the resulting model on D0.

Example clinical setting. The agents could be individual hospitals dis-
persed across one or several regions. The aetiology of common, generic symp-
toms such as fever is highly dependent on geographic location. For instance, rural
populations suffer more vector borne diseases such as malaria, while fevers in
the urban setting tend to be related to respiratory disease. A clinician (agent 0)
might want to train a ML model to help diagnose the patients admitted to their
urban hospital. The number N0 of samples collected at their hospital, however,
is too limited to yield a satisfactory model, so agent 0 considers using FL to
leverage data from other hospitals. Knowing that rural populations suffer from
fairly different problems than agent 0’s urban patients, agent 0 pre-selects only
other urban hospitals – in a way, agent 0 performs manual model personaliza-
tion based on prior medical knowledge. However, agent 0 suspects the presence
of other confounding variables that could cause the samples collected by some
of the other urban hospitals to negatively affect the diagnostic accuracy of the
trained model on new patients treated by agent 0.

For personalized collaborative ML, formally, we are given:

– A set of agents i ∈ U = {0, 1, . . . , N}
• Each agent i has collected a set of samples (called data set), on the

domain X × Y: Si =
{
x
(n)
i , y

(n)
i

}
n=1,...,Ni

, each from an (unknown)

underlying distribution Di:
(
x
(n)
i , y

(n)
i

)
i.i.d.∼ Di.

• We assume that the label y0 is not independent of the features x0 under
D0 : p0 (y|x) 6= p0 (y)

– A class of models M s.t. f : X → Y ∀f ∈M. For instance, M could be the
class of linear models where f (x) = w>x, w ∈ RD.

– A loss function: ` (y, ŷ). For instance, the loss function could be the mean
squared error (MSE).

1 The samples stored in other silos can be unhelpful for various reasons. One such
reason is intentionally byzantine behaviour, which can be successfully addressed
with existing byzantine-robust FL methods [5] and local fine-tuning. However, this
approach does not cover cases where silos contain data sampled from a different
distribution as laid out in Section 2.
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We measure the performance of a model f ∈ M by its expected loss on D0,
defined in Equation 1.

LD0
(f) = E(x,y)∼D0

[
` (y, f (x))

]
(1)

Our goal is to find a training algorithm A which, given U , M, and `, will
produce the model f = A (U ,M, `) ∈M which minimizes the personalized true
loss LD0 (f) on D0 (Equation 2). This is opposed to standard federated learning
methods AFL

standard, which consider that all non-malicious agents have samples
from the same underlying distribution. Applying such a method in the present
setting would minimize the loss on a weighted sum of the agents’ distributions
Di, i ∈ U instead, as shown in Equation 3. The weights λi depend on the specific

learning method, but they are often either λi = 1
|U|∀i ∈ U or λi = |Si|∑

i∈U |Si|
.

Personalized coll. ML: find : A = arg min
A′

LD0
(A′ (U ,M, `)) (2)

Standard FL result: AFL
standard = arg min

A′

∑
i∈U

λiLDi (A′ (U ,M, `))

(3)

3 The Weight Erosion aggregation scheme

We present a novel adaptation of federated training algorithms based on robust
aggregation rules such as in [1, 5, 13]. Briefly, each agent i is initially given a
weight α0

i = 1. At each round, they compute a mini-batch gradient2 gi and the
relative distance dreli,0 between gi and g0 (Equation 4). The weight αi is then

decreased by a small amount that depends on the distance dreli,0 (Equation 5).
The weights αi are finally used to compute a personalized weighted average of
the gradient vectors gi (Equation 6).

dreli,0 =
‖gi − g0‖
‖g0‖

≥ 0 (4)

αr
i = max

{
0, αr−1

i −
(

1 + ps

⌊
(r − 1)b

|Si|

⌋)
pd · dreli,0

}
(5)

ḡ←
∑

i∈U α
r
igi∑

i∈U α
r
i

(6)

As the number of rounds increases, samples from smaller data sets will be seen
more often than samples from larger data sets, because each agent uses the same
number of samples per round. To balance this over-representation, the change
in αi (Equation 5) is made to depend also on the average number of times each
sample in Si has been used. In Equation 5, b stands for the batch-size, while

2 Alternatively, the agents can compute local SGD updates, used in the same way.
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Algorithm 1: Weight Erosion

Data: A set of agents i ∈ U , with associated data sets Si, a model class M,
and a gradient-based machine learning algorithm A.

Result: A personalized machine learning model f .
Set a number of rounds rmax, a batch size b, a distance penalty factor pd, and
a size penalty factor ps ;

Initialize α0
i ← 1 ∀i ∈ U ;

Randomly initialize the model f ∈M ;
for r from 1 to rmax do

for i ∈ U , starting with i = 0 do
Select a batch of size b from Si and compute a gradient gi ;

Compute the distance dreli,0 (Equation 4) and αri (Equation 5) ;

end

ḡ←
∑

i∈U α
r
i gi∑

i∈U α
r
i

;

Update the model f based on ḡ ;

end

pd is the distance penalty factor and ps is the size penalty factor. The values of
these penalty factors should be picked by the user, as they control the degree
of personalization. Selecting a large value for pd leads to a rapid decay of all
agent weights, limiting the collaborative scope of the training. Conversely, if pd
is very low, available agents’ contributions are used equally regardless of their
dreli,0 . Finally, ps controls how strongly small data sets are penalized to counteract
their over-representation.

We next discuss some salient properties of our algorithm.

Privacy and robustness. Weight Erosion can be seamlessly integrated
into the privacy-preserving FL protocol proposed in [5], which leverages secure
multiparty computations (MPC) to obtain distances while keeping the individual
gradients private at all times. Replacing the Byzantine robust aggregation rule
by Weight Erosion maintains the strong privacy guarantees, together with a
weaker form of robustness since any Byzantine agent i would likely see their
weight αi decline very fast.

Incentives and IP. Agents could be rewarded for their data collection efforts
according to how many rounds they participate in, or according to their weight
(summed over all rounds). Intuition tells us that the result of Algorithm 1 lies
somewhere between the global model and agent 0’s local model (cf. Appendix A).
Each agent i can therefore verify before participating, that the other agents
contribute enough data to dilute the influence of Si and protect agent i’s IP.

Interpretability. With this approach, the user does not learn why a cer-
tain subset of the available data sets were selected, even if they understand the
selection process. Indeed, the selection is only revealed to them after the model
has been trained.

Resilience. Like [5], Algorithm 1 does not break if users appear or disappear
between subsequent rounds. When a new agent appears after the first round,
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their weight should not be initialized to 1, but rather to the mean or median
weight of all agents.

4 Application case study

We set up a collaborative ML simulation using the publicly available Titanic data
set [3]. This set collects 14 features on passengers of the cruise ship Titanic,
including their survival status. We train a prediction model for the survival
status of passengers based on the following features: fare, passenger class, port of
embarkation, travelling alone or accompanied, sex, age, and being either adult or
minor (aged 16 or less). The pre-processing procedure is largely aligned with [12].

Implementation. A generic Python framework for efficient FL simulations
on a single machine with JAX and Haiku [2, 6] was created and made publicly
available by the authors [8]. The Weight Erosion aggregation rule (Algorithm 1)
is implemented in an altered version of this framework. All code (including the
pre-processing) is made publicly available on GitHub [4]. Due to the small data
set size, the number of agents is limited by splitting it into four subsets (agents
0-3) based on the variable age. The four-way split is undertaken in two ways to
simulate IID and non-IID settings, as follows:

AGE STRICT: Samples are strictly segregated into groups based on their age:
agent 0: passengers aged 0 - 20 years old / agent 1: 21 - 35 years old / agent
2: 36+ years old / agent 3: age unknown. In this data set, the age, adult or
minor and some other features are strongly correlated with age. This feature
skew should be sufficient to affect the conditional probability p(y|x).

AGE SOME: Agents 0 and 1 randomly partition the passengers aged 0 - 35 years
old among themselves, while agent 2 has all passengers aged 36+ years old
/ agent 3: age unknown. This should make agents 0 and 1 more helpful for
each other than agents 2 and 3.

5 Results

The collaborative training of a prediction model by four agents is simulated on a
single machine for the data sets and splits detailed in Section 4. Each simulation
is repeated four times, such that each agent serves as a user once. Every time,
the user’s data set is split into a test set and a training set of equal sizes, whereas
100% of the other agents’ data sets are used for training. A classification model,
consisting of a 2-output linear regression layer followed by log-softmax, is trained
using federated SGD with three different gradient aggregation schemes:

FedAvg: Train on all agents’ training sets without Weight Erosion.
Weight Erosion: Train on all agents’ training sets with Weight Erosion.
Local: Train only on the user’s training set.

At each communication round, each model’s accuracy is measured on the user’s
test set and reported (along with the weights αi in the Weight Erosion scheme).
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5.1 Predicting survival of the Titanic with AGE STRICT split

In Figure 1 (top), we can see the compensating effect of ps at work, as agent 1’s
weight α1 experiences the slowest decrease in all three graphs because agent 1
has collected one batch more than the other agents. Nevertheless, the difference
between α1 and the other agent weights is only very marked when agent 2 is the
user, showing that the impact of pd rivals that of ps.

When splitting the Titanic data set into agents by age, we notice that the
survival rate (Figure 1 top: lower of the two red dotted lines in each graph) is
fairly similar across all age groups. This implies that the age feature may not be
particularly useful in predicting the survival of passengers. However, the survival
rate is much lower among the group of passengers whose age is unknown. This
could simply be a sampling bias, as it would seem easier to research the age of
survivors than that of the deceased.

Another debatable feature is whether the passenger is a child (Passenger
is minor), which is false across all data of agents 1 and 2, and unknown in
the data set of agent 3. We observe that agent 0 stands out by the fact that the
Weight Erosion model clearly out-performs the Local model. Nevertheless, the
difference in prediction accuracy does not come from the Local model overfitting
on the Passenger is minor feature, since its weights are nearly identical in both
models as we see in Figure 2 (top left, top center).

Travelling alone is strongly correlated with death in both models, indicat-
ing that passengers aged 0 - 20 years old were more likely to die when travelling
alone. Notably, the same feature is weakly correlated with survival in the FedAvg
model, as well as in the very accurate Local and Weight Erosion models trained
with agent 2 as user (cf. Figure 2: bottom left, bottom center).

In Figure 2 (top left, top center), three features have smaller weights in the
Weight Erosion model than in the Local model: Travelling alone, boarding
in Queenstown (as opposed to Southampton or Cherbourg), and travelling in
Second Class. These differences could be a sign that the local model is overfit-
ting, especially if they apply to a small portion of the passengers, as is the case
with Queenstown and presumably Travelling alone.

Interestingly, the Weight Erosion aggregation scheme can produce a model
that is not merely a weighted average of the FedAvg and Local models. Indeed,
in Figure 2 (top), the weights of some features such as Sex, Age, or boarding in
Queenstown, differ more between the FedAvg model and the Weight Erosion

model, than they do between the FedAvg model and the Local model.
In Figure 2 (bottom left, bottom center), we investigate the weights of the

models trained with Local and Weight Erosion schemes when agent 2 is the
user, since these models perform exceptionally well (> 90%) despite the unex-
ceptional survival probability of 40%. We observe that weights with absolute
values < 0.25 differ between the models, without affecting their performance,
while larger weights are very consistent. Further, two main features stand out:
Firstly, the weights for Sex are spectacularly large (with absolute values between
1.1 and 1.4). Given the models’ extraordinary test accuracies, we conclude that
most survivors aged 36+ were female. Secondly, the weights of the First Class
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Fig. 1: Predicting survival of the Titanic. The data set is split across 4 agents by
age. Full lines represent each model’s accuracy on the user’s test set. Displayed
in red (dashed) is the accuracy obtained by predicting always 1 or always 0. The
learning rates were tuned independently for each aggregation scheme (in legend:
lr). Training on one batch per round and agent. pd = 0.01, ps = 0.2, seed = 278.
Top: AGE STRICT split. Batch size: 161 (agent 1: 3 batches, others: 2 each).
Bottom: AGE SOME split. Batch size: 132 (agent 3: 2 batches, others: 3 each).

and Second Class features show that, in this age group, only First-Class pas-
sengers were much more likely to survive than Third-Class passengers.

5.2 Predicting survival of the Titanic with AGE SOME split

As expected, we observe that agents 0 and 1, whose samples are drawn from
the same age group, have the highest weight in each other’s model, while their
weights are similar to each other in the two other agents’ models (Figure 1,
bottom). The models trained by these agents achieve the same test accuracy as
with the AGE STRICT split, save for the spectacular accuracy obtained for agent 2
in Figure 1 (top).
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Fig. 2: Top: Parameters of the models trained in Figure 1 (top left). Bottom:
Parameters of the models trained in Figure 1 (top, agent 2). Black: Weights for
the first output of the linear layer. Gray: Weights for the second output, e.g.:
< <<<<<>>>>>> : The feature is strongly correlated with death.

< <<<<<>>>>>> : The feature is strongly correlated with survival.

6 Conclusion

In this paper, we introduce a novel method of model personalization in collabo-
rative ML: Weight Erosion. Our application case study demonstrates that it can
outperform two baseline schemes (FedAvg and local training), by converging to
a better model that is not a linear combination of the local and global models.

Further work. Additional refinement is needed to address in a more eq-
uitable way the under-representation of samples from larger data sets, e.g. by
introducing a different weight βi that is unrelated to αi. Equally importantly,
the Weight Erosion scheme should be tested on different ML tasks, such as im-
age classification. For instance, the need for model personalization could arise as
clinicians train a risk stratification model for COVID-19 pneumonia to identify
pathological patterns in lung ultrasound images that warrant hospitalization.
Personalized collaborative ML would allow them to leverage existing lung ultra-
sound acquired in other hospitals without being negatively affected by geographic
variations in aggravating factors (such as diabetes or exposure to tuberculosis
and indoor air pollution), nor by other confounding variables. Additionally, the
patterns of pathology that warrant hospitalization may be assessed differently
in light of local resources and thus vary between subsets of agents.
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A Analyzing Weight Erosion

Let us analyze what happens in a few examples, if gi are indeed the full gradients
(i.e., computed on the entire set Si), as opposed to stochastic gradients. Let us
further assume that each training loss function LSi (f) is convex in the model
parameters w.

Example 1. Suppose the model has just been randomly initialized to f0 and per-
forms very sub-optimally for both Si and S0. Then, the normalized distance be-
tween the gradients will be very low. Formally:

Let min
{
LS0

(
f0
)
,LSi

(
f0
)}
� max {LS0 (fSi) ,LSi (fS0)} , fSi = arg min

f∈M
LSi (f)

⇒ ‖gi − g0‖ � ‖g0‖
⇒ dreli,0 � 1

Therefore, both agents i and 0 are fully included at this stage of the training
process, because the distance dreli,0 is close to 0.

However, as the training process progresses and the model gradually performs
better, the distance between the gradients steadily increases. We can analyze the
edge cases where f is either the global model or the local model:

Example 2. Suppose f is the global model for 2 agents, 0 and i:

Let f = arg min
f ′∈M

LS0∪Si (f ′) , LS0∪Si (f) =
|S0|LS0 (f) + |Si|LSi (f)

|S0|+ |Si|

⇒ 0 = ∇wLS0∪Si (f) =
|Si|

|S0|+ |Si|

(
|S0|
|Si|

g0 + gi

)
⇒ gi = −|S0|

|Si|
g0

⇒ dreli,0 =
‖gi − g0‖
‖g0‖

=

∥∥∥(− |S0||Si| − 1
)
g0

∥∥∥
‖g0‖

= 1 +
|S0|
|Si|

In this case, whether (and to which degree) agent i should participate in the
training depends on the sizes |S0| and |Si|: Indeed, if |S0| � |Si|, then dreli,0 ≈ 1,
indicating that it would be useful to incorporate agent i further in the training
process. This is sensible, considering that the much larger number of samples in
Si could help reduce the generalization error substantially. Inversely, if |S0| �
|Si|, then it is not useful to include Si in training and we are better off only
using the (much more numerous) samples collected by agent 0. Correspondingly,
this leads to dreli,0 � 1.
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Example 3. Suppose now that f is the local model of agent 0:

Let f = arg min
f ′∈M

LS0 (f ′)

⇒ g0 = ∇wLS0 (f) = 0

⇒ ∀i ∈ U : dreli,0 undefined (+∞)

Under the stated assumptions of convexity and full gradient descent, all distances
dreli,0 grow without an upper bound as the trained model approaches the local model.
In other words, when we move too close to the local model, all data sets start to
appear very different from S0. Consequently, using any decreasing function of dreli,0

as a similarity metric results in the danger of converging to the local model. One
possible strategy to prevent this is to stop training before convergence. Intuitively,
training should not be stopped as long as the gradients fit into a D-dimensional
cone3.

3 If all gradients fit into a cone, then it is possible to improve the loss on all data sets
by taking a step in the opposite direction of the axis of the cone.
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